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I. SIMULATION DETAILS

In this section we present details of the simulation
model that complement the description given in the main
text. In addition, we provide further simulation results,
which serve to underpin the generality of our findings.

A. Fluid Parameters and Swimmer Models

The ‘raspberry swimmers’ are based on the lattice-
Boltzmann method implementation [1] and simulated us-
ing a graphics processing unit (GPU) based LB solver [2]
that is attached to the MD software ESPResSo [3, 4].
This GPU LB employs a D3Q19 lattice and a fluctuat-
ing multi-relaxation time (MRT) collision operator [5].
All of our simulations are performed in a quiescent (un-
thermalized) LB fluid. A three-point interpolation sten-
cil [6] is employed together with the LB viscous coupling
of Ref. [7] to couple the raspberry particles to the fluid.
We set the fluid density to ρ = 1.0m0σ

−3, the lattice
spacing to 1.0σ, the time step to ∆t = 0.005τ (τ is the
time and m0 the mass unit), the (kinematic) viscosity
to ν = 1.0σ2τ−1, and the bare particle-fluid friction to
ζ0 = 25m0τ

−1. Fischer et al. [8] provide a detailed de-
scription of the dimensionless numbers that specify the
fluid properties to which these choices correspond.

We consider two types of self-propelled particles, a rod
and cylinder as shown in Fig. S1. The rod consists of nine
coupling points spaced 0.5σ apart over a line, with σ the
LB grid spacing. The cylinder consists of 161 coupling
points spread over 23 groups of hexagonal disks (seven
particles with distance σ), stacked alternatingly with a
separation of 0.5σ along the axis. The rod has an effective
hydrodynamic length of 5.5 and a diameter of 1.7; the
cylinder has an effective length of 12 and diameter of
3.2; and the sphere an effective radius of 3.1 [1]. Full
details of these swimmers construction (mass, rotational
inertia, etc.) are given in Ref. [1].

The raspberry bodies are made into swimmers by as-
signing a unit (direction) vector p̂ to their center that
points along the symmetry axis, see Fig. S1a. This p̂
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shape vs κ ν µ o1 o2

rod
2.5 10−3 −1.3 10−2 3.7 10−2 0.0 0.0 −0.11

2.5 10−3 1.3 10−2 3.7 10−2 0.0 0.0 0.11

cylinder
9.9 10−4 −2.7 10−2 0.23 0.0 0.0 −2.1

1.0 10−3 2.7 10−2 0.23 0.0 0.0 2.1

TABLE I. The properties of our LB raspberry swimmers from
Legendre-Fourier decomposition [1]. The table provides the
shape, the velocity νs of the swimmer in units of (σ/τ), the
dipole strength κ (σ3/τ), the quadrupole strength ν (σ4/τ),
the source-dipole strength µ (σ4/τ), the source octupole o1
(σ5/τ), and the force octupole o2 (σ5/τ), respectively. The
positive signs of κ correspond to pusher swimmers and the
negative ones to pullers.

co-moves with the particle. We apply a force ~F in the di-

rection of p̂ (~F = F p̂) to the central molecular-dynamics
bead, to which the rest of the coupling points are rigidly
attached. This force causes the raspberry particle to

move. We further apply a counter force −~F to the fluid
at a position lp̂, with l the separation length, to make
the system force free. For positive values of l the swim-
mer is a puller and for negative values it is a pusher. We
refer to Ref. [1] for the specific parameter choices. For
convenience, we summarize the relevant quantities that
these choices lead to in Table I, namely: the speed and
hydrodynamic moments.

Using the size and speed of the swimmers, and kine-
matic viscosity of fluid, it is clear that Reynolds number
of all our swimmers is less than 0.01. We use a quiescent
fluid, therefore the Péclet number is ill-defined, as there is
no translational (or rotational) diffusion. Both rod- and
cylinder-type swimmers model ‘cylindrical’ self-propelled
particles, but the level of description varies as well as the
speed of the simulation. The rod-like model captures
some of the hydrodynamic aspects of an extended ob-
ject, namely the existence of a hydrodynamic quadrupole.
The use of the low number of coupling points makes the
simulations fast compared to those for the cylinder swim-
mer. However, extended objects with a higher coupling-
point density, like our cylindrical swimmer, more accu-
rately model a rod-like shape that is impenetrable to the
fluid [9]. The use of a cylindrical swimmer thus serves to
verify that the results obtained for the rod swimmer are
not induced by low coupling-point density.
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FIG. S1. The flow field around our raspberry-swimmer mod-
els. (a) Sketch of a puller-type rod. The size of the green
spheres roughly corresponds to the effective hydrodynamic ra-
dius of our coupling points (∼ 0.5σ). A force ~F (blue arrow)
is applied to the central bead (blue cross) in the direction of

the symmetry axis p̂ (black arrow). A counter force −~F (red
arrow) is applied to the fluid at a point lp̂ (red cross), with
l the separation length. (b) The flow field around a puller-
type raspberry rod (left) and cylinder (right). The normalized
magnitude of the flow velocity in the lab frame given by the
legend (red max |~u(~r)| = 1, dark blue |~u(~r)| = 0); only a part
of the simulation box is shown, again the diameter of the
green spheres is 1σ. White curves are stream lines and the
magenta arrow heads indicate the direction of flow.

B. Simulation Setup

The above LB and raspberry coupling parameters re-
sult in faithful reproduction of theoretical results for pas-
sive particles in confining geometries, as was shown by
De Graaf et al. [10]. Since we use a three-point cou-
pling stencil deviations from the expected behavior of
passive particles (solutions to the Stokes’ equations) will
occur within 2σ of the wall, rather than the 1σ found

in Ref. [10]. Here, confinement is achieved by placing
two no-slip (bounce-back) walls on either side of the sim-
ulation box in the z-direction. We pad the box using
two lattice nodes of wall (zero velocity) on either side
rather than one, because of the 3-point coupling of our
swimmers to the fluid. The simulation domain is kept
periodic in the other (xy) directions. This leads to a so-
called ‘slit-pore’ geometry. We performed Poiseuille flow
experiments to verify the height of the channel, the re-
sults of which we fit to the Hagen-Poiseuille expression.
In all cases, the deviation between the imposed and fitted
channel height is minimal (∼ 0.1σ).

In each of our simulations, the swimmer is initialized
in the center of the box in the xy-direction, at a height
z with respect to the center of the channel (z = 0). We
ensure that the swimmer’s director p̂ is in the xz-plane
and impose its initial angle φ with the plate normal ẑ,
where φ ∈ [−π/2, π/2]. Typically, we use φ = 0 as the
initial angle, which means that the swimmer is oriented
parallel to the plane. The fluid in the channel is fully
quiescent at time t = 0 and the particle starts with zero
velocity. The LB parameters are chosen such that after
the particle has moved only a fraction of σ the fluid flow
field and terminal velocity of the swimmer is established,
thereby minimizing the effect of inertia and momentum-
transport retardation that physically do not play a role
on the colloidal length scale at low Reynolds number.

To prevent the swimmers from penetrating the wall, we
include a Weeks-Chandler-Anderson (WCA) interaction
between the raspberry coupling points and the bounce-
back boundaries. The expression for the interaction is
given by

UWCA(r) =


4ε

[(
d
r

)12
−
(
d
r

)6
+ 1

4

]
, r ≤ 21/6d

0, r > 21/6d

,

(1)

where r is the minimal distance between a coupling point
and the wall and d is the ‘diameter’ of the particle. Ev-
ery coupling point interacts with the wall via the WCA
potential, leading to an overall wall-swimmer interaction
that models that of a hard rod or cylinder with a hard
wall. We typically use d = σ.

C. The Angular Evolution for Oscillating
Swimmers

For completeness Fig. S2 shows the way the angle φ
evolves along the trajectory of the swimmers given in
Fig. 1 of the main text. The orientation of the rod
changes along the trajectory. When the particle moves
between the two walls, it comes close to making a 45◦

angle with respect to the horizontal. This is further vi-
sualized in the supplemental movies described in the next
section.



3

−0.2

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5  6

pusher
φ
/π

x/(4H)

−0.02

−0.01

 0

 0.01

 0.02

 0  1  2  3  4  5  6

puller

φ
/π

x/(4H)

rod(13σ)
cyl(40σ)
rod(50σ)

(b)

(a)

FIG. S2. The angle φ as a function of horizontal displacement
x of swimmers between two parallel plates with separation H.
Results are for swimmers that are initially oriented parallel
to the walls and at z = 1σ; using the exact same data sets as
used in Fig. 1 of the main text. (a) The results for pushers:
rod for H = 13σ (red, solid), cylinder for H = 40σ (blue,
dashed), and rod for H = 50σ (green, dots). (b) The results
for pullers, otherwise the systems are the same.

D. Description of the Supplemental Movies

To illustrate the movement of the swimmers, we have
included two movies in the ESI. These show the trajec-
tory of a puller and pusher rod in a confining channel
with height H = 13σ and lateral extent L = 70σ. The
initial position is z = 1σ and φ = 0 and we used a WCA
parameter of d = σ. The labeling of the movies is as
follows: the type of the particle is given, followed by a
list of quantities and values, with each set separated by
a double underscore. The notation of the quantities is
the one used throughout and each quantity and value
are separated by a single underscore. We chose a slightly
smaller lateral extent of the channel than used to pro-
duce Fig. 1 of the main text. The reason is that for the
typical channel sizes studied in our work, the motion of
the swimmer would be difficult to observe. However, we
have verified that the limited size of the channel does not
strongly effect the trajectory.

E. LB Algorithm Limitations in the Near-wall
Region

We scrutinize the presence of the artificial limit cycle
for our pusher-type rod through a series of computational
examinations. By our examinations we reach the follow-
ing conclusions. Since the LB algorithm does not explic-
itly account for near-wall lubrication corrections [8], it
fails to be accurate in the near wall regime and we are
therefore unable to comment on the nature of any poten-
tial limit cycle. Additionally, the counter-force point can
artificially penetrate the wall at the point of closest ap-
proach. These points indicate that, although limit cycles
may exist in certain physical swimmers, the simulated
trajectories cannot offer physically relevant predictions.
We explain the way we arrived at these conclusions in
detail below.

In our examination of the system, the lateral extent of
the domain is varied between L = 5H and L = 35H to
eliminate the effect of xy periodicity on our results: there
is no discernible impact of L on the trajectories above
L = 10H. We vary the viscosity and swimming speed to
verify that retardation of the fluid momentum transport
does not introduce these cycles; these changes only have
a small effect. The value of the WCA interaction d is
varied, as shown explicitly in Fig. S3. We find that for
d > 1.5σ the limit cycle disappears and the rod’s trajec-
tory is reminiscent of the pusher cylinder’s, see Fig. 1 in
the main text. In both of these cases (inflated WCA rod
and the unmodified cylinder) non-hydrodynamic contact
with the WCA wall occurs and the self-propelled parti-
cles move along the plane of contact (sliding). Similar
sliding dynamics have been observed in simulations that
neglect HIs [11].

The pusher rod performs its persistent oscillatory tra-
jectory even in the absence of the WCA potential. For-
tuitously, it does not penetrate the wall, although pen-
etration can be achieved in this case by starting with
values of φ that are greater than ∼ 25◦ when d = 0. This
may seem to indicate that the limit cycle is a physical ef-
fect. However, this is not the case, as the rod comes very
close to the wall, where LB does not faithfully reproduce
hydrodynamics [10].

We therefore also considered the interaction of the
counter-force point with the wall, see Fig. S4. We find
that the counter-force interpolation (which takes place
over a region of 3σ in diameter due to the three-point
coupling) is partially inside of the wall at the closest ap-
proach, which impacts the reorientation of the rod. To
check the effect of this, we switched to a two-point inter-
polation stencil. The limit cycle persists, but here too the
interpolation region overlaps with the wall nodes, even
though the overlap is substantially reduced. When the
value of d increases beyond d = 1.5σ, the counter-force
point is no longer interpolated inside the wall. Similarly,
the cylinder’s size prevents its counter-force point from
being interpolated into the wall at closest approach. This
indicates that the limit cycle observed for LB-raspberry
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FIG. S3. Trajectories of pusher-type rods between two paral-
lel plates with separation H = 17σ. The horizontal displace-
ment x and vertical position z are given for a swimmer that
is initially oriented parallel to the walls φ = 0 and at z = 1σ,
with σ the MD unit of length and z = 0 the center of the
channel. For each curve, the top of the black frame enclos-
ing the trajectory is at z/H = 1/2, while the bottom is at
z/H = −1/2. From top to bottom, the range of the WCA
interaction d increases from 0 to 2σ in steps of 0.5σ.
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FIG. S4. Trajectory (black curve) of a pusher-type rod be-
tween two parallel plates (gray lines) with separation H =
13σ. The horizontal displacement x and vertical position z
are given for a swimmer that is initially oriented parallel to
the walls φ = 0 and at z = 1σ, with σ the MD unit of length
and z = 0 the center of the channel. The vertical extent of
the lattice nodes involved in the 3-point interpolation of the
counter-force are indicated using the red and blue lines.

swimmers is due to limitations in simulating the hydro-
dynamic interactions for close swimmer-wall separations,
because of the spread-out counter-force scheme.

While the near-wall hydrodynamics are not accurately
captured by our algorithm, the far-field is. There-
fore, in a system where there is a long-range (non-
hydrodynamic) repulsion, our algorithm would produce
the correct physics — provided that the range of the
repulsion is sufficient to keep the LB coupling points
far enough away from the wall. In the main text, we
chose the WCA repulsion in such a way that the size of
the ‘hard core’ matches the effective hydrodynamic size
of the particle. Choosing the WCA range much larger,
would remove this physical correspondence; therefore us-
ing an additional soft potential would be more appropri-
ate to achieve wall repulsion. We are, however, unaware
of any biological or artificial swimmers that are strongly
repulsed from boundaries by long-ranged potentials and
have therefore not considered this possibility further here.

In summary, the persistent oscillation (limit cycle) seen
after long times for pusher-type swimmers must be at-
tributed to a simulation artifact. Nevertheless, for the
onset of the oscillation, which we are interested in the
main text, there are no counter-force-overlap problems,
as is clearly illustrated in Fig. S4.

F. Rod Swimmer Length

The effect of rod length on the trajectories of push-
ers is seen in Fig. S5. Since the effective hydrodynamic
diameter of the rods is governed primarily by the cou-
pling parameters when using only a single row of coupling
points [9], varying the length has the effect of varying
the aspect ratio of rod-shaped particles. We found only
minor modifications of the trajectories, reflecting the mi-
nor changes in the hydrodynamic multipole expansion
due to the change in aspect ratio. That is, the presence
of a hydrodynamic quadrupole is the dominant effect in
the formation of oscillatory trajectories; the strength of
the quadrupole moment is only weakly perturbed by the
changes in the length that we considered.

G. Helical Trajectories

The LB-raspberry swimmer model can be extended to
simulate swimmers in other geometries. We find that our
rods display helical trajectories, see Fig. S6. The helical
trajectory observed for a tube with a square cross section
is due to the swimmer starting off-center and away from
one of the symmetry planes. Puller rods move consis-
tently towards the center of the tube (not shown here)
and also exhibit helical motion. The helical trajectory
of the swimmer in the circular tube is due to a numeri-
cal artifact close to the boundary. The first part of the
trajectory in the circular tube is purely oscillatory, as ex-
pected on the basis of symmetry and as we also observed
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FIG. S5. The (x,z) trajectories for pusher rods confined to a
channel of height H = 17σ, which have initial position z = 1σ
and angle φ = 0. We vary the length of the rod by adding
coupling points. The rod used throughout has a bare length
of 4σ (solid red curve) [and an effective hydrodynamic length
of 5.5σ]. Puller rods with bare length 6 (green dashed) and
8 (blue short dashes) are also shown. For each curve, the top
of the black frame enclosing the trajectory is at z/H = 1/2,
while the bottom is at z/H = −1/2.

for pullers. Only when an initial yaw angle is imposed
does the rod perform a helical trajectory from the start
of the simulation, similar to the observations of Ref. [12].

II. SWIMMER-GENERATED FLOW FIELDS

As a swimmer at position ~r and orientation p̂ moves,
it disturbs the surrounding bulk fluid at position ~x. This
disturbance field can be written in terms of a multipole
expansion

~u (~x,~r, p̂) = κ~uD + ν~uQ + µ~uSD + o1~uO1
+ o2~uO2

+ . . .
(2)

where ~uD is the Stokes dipole representing the oppos-
ing propulsion and drag forces, ~uQ the quadrupole repre-
senting the fore-aft asymmetry of the swimmer, ~uSD the
source doublet representing the finite size of the swim-
mer, and the octupolar terms ~uO1 and ~uO2 describe the
features of the flow in more detail [13]. Possible Stokeslet
and rotlet (doublet) terms are omitted as the raspberry
swimmers are force and torque free.

These Newtonian flow fields can be written in terms of
derivatives of the Oseen tensor

Jij(~r) =
δij
R

+
RiRj
R3

, (3)

where i, j ∈ {x, y, z} are indices. This produces a point-
force Stokeslet uSi = pjJij velocity field at position ~x due

(a)

y
x

z (b)

FIG. S6. Trajectory (blue curve) of a pusher-type rod
in a square tube (a) and a circular tube (b). The side
length/diameter is H = 17σ. The swimmer is initially ori-
ented parallel to the walls φ = 0 and located at x = 2σ and
z = 1σ, with σ the MD unit of length and x = z = 0 the
center of the tube. The trajectories shown here are 28H long
in the y direction.

to a point force at position ~r; where δij is the Kronecker
delta and R = |~x− ~r|. From this [13] we obtain

~uD(~x,~r, p̂) = +(p̂ · ~∇)~uS , (4)

~uQ(~x,~r, p̂) = − 1
2 (p̂ · ~∇)2~uS , (5)

~uSD(~x,~r, p̂) = − 1
2∇

2~uS , (6)

~uO1(~x,~r, p̂) = + 1
6∇

2(p̂ · ~∇)~uS , (7)

~uO2(~x,~r, p̂) = + 1
6 (p̂ · ~∇)3~uS , (8)

where the derivatives act on the swimmer position
~r. Hence, inserting equations (4–8) into (2) gives the
swimmer-generated flow field in the absence of walls.

A. Wall-Induced Hydrodynamic Interactions

These flow fields must be modified in the vicinity of
boundaries. This can be done by the method of images
so that the no-slip boundary conditions of both walls
are satisfied. Consider the upper wall (denoted by super-
script +): an additional velocity ~u+ must be added to the
multipole expansion velocity ~u from (2) in order to satisfy
the no-slip boundary condition at the wall z = H/2. We
write this as

[
~u+ ~u+

]
z=H/2

= 0. Likewise, the same is

true at the bottom wall (denoted by superscript −) and
we say

[
~u+ ~u−

]
z=−H/2 = 0. The two velocity fields ~u±

represent an image system for the upper and lower wall,
respectively. For two parallel walls the image system
comprises an infinite series of images, but we consider
only the first two images in this ESI. This derivation can
be extended to N images [14], and the results reported
in the main text use eight images (four for each wall).
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These two images (above the upper wall [+] and below
the lower [−]) are located at position

~r± = ±(H/2)êz +M(∓(H/2)êz + ~r) (9)

where M = diag(1, 1,−1). Hence, the relative distance

between the images and a point in the fluid is ~R± =
~x−~r±. The velocity field of the image flow is then given
by the Blake tensor in index notation

B±ij =
(
−δjk + 2h±δkz∂j + (h±)2Mjk∇2

)
Jik, (10)

where h± = 1
2 (~r − ~r±) · êz, derivatives are taken with

respect to swimmer position, and repeated indices are
summed over. The two image systems due to point forces
in the direction p̂ are then pjB±ij . From this pair of
Stokeslet images, the image systems of the Stokes dipole,
quadrupole, etc. can be constructed accordingly by tak-
ing successive derivatives as in equations (4–8) and the
complete image system for the pair ~u± is found.

These image velocity fields interact hydrodynamically
with the swimmer. The wall-induced translational and
rotational velocities of the force-free and torque-free
swimmer are found by rearranging the Faxén relations
evaluated at the swimmer position. Hence, we have

~vh =

[(
1 + 1

6a
2∇2

)
~u±
]
~x=~r

, (11)

~Ωh =
[
1
2
~∇× ~u± +Gp̂× (E± · p̂)

]
~x=~r

, (12)

where the derivatives act on the position ~x, E is the rate-
of-strain tensor, a is characteristic size of the swimmer,

and G = γ2−1
γ2+1 is a function of the aspect ratio γ. Insert-

ing the images of the swimmer-generated flow field (2)
into the Faxén relations (11–12) yields the wall-induced

advection and rotation (~vHI and ~ΩHI in the equations of
motion of the main text).

III. SWIMMER DYNAMICS MODEL

Using the translational invariance along the x and y
directions, we write the swimmer’s orientation as p̂ =
(cosφ, 0, sinφ) without loss of generality, where φ = 0
corresponds to swimming parallel to the walls. Hence,
the swimmer’s equations of motion simplify to the two
coupled equations, φ̇ = φ̇(φ, z) and ż = ż(φ, z). If we
consider the simplified case of a point swimmer with as-
pect ratio γ = 1, and only use one image system on each
side of the channel, these equations are

φ̇ = ± 3κ sin 2φ

16(z ∓ H
2

)3
∓ 3ν(cosφ+ 3 cos 3φ)

64(z ∓ H
2

)4
∓ 3µ cosφ

8(z ∓ H
2

)4
∓ o1 sin 2φ

4(z ∓ H
2

)5
∓ 3o2(14 sin 2φ+ 15 sin 4φ)

512(z ∓ H
2

)5
, (13)

ż = ±3κ(3 cos 2φ− 1)

16(z ∓ H
2

)2
± ν(sinφ+ 9 sin 3φ)

32(z ∓ H
2

)3
± µ sinφ

(z ∓ H
2

)3
∓ 5o1(3 cos 2φ− 1)

32(z ∓ H
2

)4
∓ 15o2 cos2 φ(5 cos 2φ− 3)

128(z ∓ H
2

)4
+ vs sinφ. (14)

A. Fitting Hydrodynamic Moments

An extension of these equations of motion (13–14),
with a 6= 0 and G 6= 0, is used to match the dynam-
ics of the model swimmers and LB swimmers (Table 1;

main text). To achieve this, the time derivatives φ̇ and
ż are extracted from the LB trajectories for a number
of randomly chosen (φ, z) coordinate points, N = 500.
Note that the first point in time is chosen to be after the
first half oscillation such that the LB-raspberry swimmer
has reached a constant swimming velocity and retarda-
tion effects are minimized. At each point, the LB values
are compared to the values predicted by the model with

a least squares method:

S =

N∑
i=1

(φ̇LB − φ̇model)
2

(2π)2
+

(żLB − żmodel)
2

H2
. (15)

Hence, the theory and LB simulations are matched by
minimizing the S function with respect to the far-field
multipole expansion parameters. Here, the swimming
speed vs is fixed at the actual values (Table 1; main text).
Likewise, the particle radius a is chosen to be fixed at the
half-length of the LB rod or cylinder swimmer and the
aspect ratio γ is set to its geometric value. Similarly, the
parameters µ, o1 are constrained to the LB-measured val-
ues, which is physically reasonable because these source
doublets and quadrupolets are expected to be compara-
tively small, since our swimmers are constructed without
fluid sources or sinks [1]. Finally, the multipole moments
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κ, ν, o2 are allowed to vary, where a standard simulated
annealing algorithm is used to find the least squares.

B. Analysis of swimmer oscillations

In order to analyze the micro-swimmer dynamics, we
linearize the equations of motion (13–14) about the cen-
terline of the micro-channel (z = 0), and about the ori-
entation parallel to the walls (φ = 0). For simplicity,
we consider only the dipolar and quadrupolar contribu-
tions to the multipole expansion and set the octupolar
and higher-order contributions to zero. The dynamics
can then be captured by the matrix equation

(
φ̇(t)

ż(t)

)
=

 − 6κ

H3
−48(ν + 2µ)

H5

vs −
2(7ν + 8µ)

H3

12κ

H3


(
φ

z

)
.

(16)

First, we consider the motion in the absence of a dipole
moment (κ = 0), but with quadrupole moment ν and
source doublet moment µ. Then, the eigenvalues λe of
the matrix are

λe = ±
4
√

3(ν + 2µ) (14ν + 16µ− vsH3)

H4
, (17)

which corresponds to oscillatory motion (λe is imagi-

nary) if H >
(
[14ν + 16µ] /vs

)1/3
. That is to say that

the channel must be wide enough with respect to ν, µ,
and the swimming speed vs in order to observe oscilla-
tory motion. For channels that are narrower than the

critical height Hc =
(
[14ν + 16µ] /vs

)1/3
the theory pre-

dicts that the swimmers do not oscillate. For our os-
cillating LB-raspberry swimmers this condition is met
(Table 1; main text). Specifically, for the rod-type swim-
mer, we measured ν = 3.7 10−2σ4/τ , µ = 0σ4/τ and
vs = 2.5 10−3σ/τ . Therefore, condition for oscillatory
motion is satisfied for channels heights Hc ' 6. Simi-
larly for the cylinder-type LB swimmer, we find oscilla-
tory motion requires Hc ' 14. In our simulations, we
use channels heights that are larger than these critical
values.

Hence, oscillatory dynamics can be observed. With the
initial conditions z(0) = z0 and φ(0) = 0, the swimmer’s
position in the channel is given by z(t) ≈ z0 cos(ωt),
where the oscillation frequency

ω = iλe ≈ 4

√
3νvs
H5

(18)

tends to zero as ν → 0 or H →∞, so that the oscillations
gradually disappear in large channels.

With κ included, the eigenvalues of equation (16) are

λe =
3κ

H3
± iω ≡ α± iω, (19)

ω2 =
48vs(ν + 2µ)

H5
− 81κ2

H6
− 96(ν + 2µ)(7ν + 8µ)

H8
,

(20)

where we have introduced α = 3κ/H3. Therefore, pro-
vided ω2 > 0, the swimmer dynamics can be approxi-
mated by

z(t) ≈ z0 cos(ωt) exp (αt) , (21)

which describes oscillatory trajectories, growing in am-
plitude for pushers and decreasing for pullers.
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