## Improving *in vivo* microbubbles lifetime via intercalation of $C_6F_{14}$ into the lipid shell

Supplementary 1:



**Supp 1:** Graphical representation comparing lifetime of MBs. **(A)**: *in vitro* MB lifetime for  $C_3F_8$  gas encapsulated MB with different lipids DPPC and DSPC, in the shell at room temperature. **(B)**: *in vivo* Time Intensity Curves (TICs) for the same composition MBs, in mice aorta

*In vitro,* (supp 1A) samples were collected and imaged every 30 min to measure the MB concentration. The presented results show long lived MBs in both cases (>3 hrs) and no significant difference for either of the lipid coated MB samples. *In vivo,* supp 1B. The same samples were injected into mice via the tail and time intensity curves (TICs) obtained in the mouse aorta. Supp1B shows the TIC curves with very short *in vivo* stability (~2min) but detectable difference in signal intensity between the two samples.

These results suggested that the *in vitro* experiment do not simulate the *in vivo* conditions adequately. The *in vivo* TIC curves suggested DPPC based MBs provide stronger contrast than the DSPC based MBs.

## Supplementary 2:



**Supp 2:** Concentration of MBs with DPPC as the main lipid component and different PEG chain lengths and concentrations. In this case the gas core is fixed to  $C_4F_{10}$ .

**Supp.2** Effect of changing the PEG concentration and PEG chain length on MB stability. MBs in this case are all encapsulating  $C_4F_{10}$  in the core and have DPPC as the major shell component, with either 5 or 10% of either DSPE-PEG<sub>2000</sub> or DSPE-PEG<sub>5000</sub>. The results here show that the longest lived MBs are those with 5% PEG<sub>2000</sub> in the shell.

## Supplementary 3:



Supp 3: Modelling MB lifetime after Epstein-Plesset (ref K. Sarkar)

Supp.3 shows modelling of MB size as a factor of changing the gas core, this modelling is calculated Following Sarker and using these constants for the calculations:

Lg = Ostwald Coeff.:  $C_3F_8$ = 5.2e-4;  $C_4F_{10}$  =2.02e-4; Kg = diffusivity of gas in water (m<sup>2</sup>s<sup>-1</sup>):  $C_3F_8$ = 7.45e-10;  $C_4F_{10}$  =6.9e-10 hg = 1/R<sub>shell</sub> = permeability of shell (ms<sup>-1</sup>):  $C_3F_8$ = 1.2e-6;  $C_4F_{10}$  =2.57e-7 **Supplementary 4:** 



**Supp 4: MBs lifetime with changing gas component and PEG<sub>2000</sub> concentration in the shell**. **(A):** *in vitro* MB lifetime in cell media at 37 <sup>0</sup>C. **(B)**: *in vivo* Time Intensity Curves (TICs) comparing the difference between the shortest and improved lifetime MBs in mice aorta.