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A. Microscopic approach to phenomenological model

1. Rotors with identical frequencies

Here, we derive coarse grained equations of motion for the rotor density and orientation fields. Since we are mainly
interested in the competition between active rotations and chemotaxis - and in the corresponding physical mechanism
allowing for structure formation - we use a variety of approximations to achieve a ‘minimal’ rather than a rigorous
coarse grained description of active rotors which focuses on this competition (and hence only covers a subset of possible
phenomena). This procedure leads to Eqs. (1-3) considered in the main text.

Consider an ensemble of N ‘signalling rotors’, which self-propel with constant velocity v0 along the directions
pi = (cos θi, sin θi). In the uniform state, these directions rotate actively with natural frequencies Ωi, but generally
also respond to chemical gradients, where βR denotes the ‘chemotactic’ coupling strength. We further assume (steric)
alignment interactions between different rotors which are sufficiently short ranged to allow us to replace their spatial
dependence by a pseudopotential (a zero ranged ‘δ’-interaction). Denoting the rotational diffusion constant by Dr,
and by ξ(t) a Gaussian white noise with unit variance, we describe a single chemotactic rotor in 2D via the following
Langevin equations

ṙi = v0pi (1)

θ̇i = Ωi + βRpi ×∇c+G

N∑
j=1

sin(θi − θj)δ(ri − rj) +
√

2Drξi(t) (2)

where we used the notation a×b = a1b2−a2b1 and c(x, t) is the chemical field produced by the ensemble of ‘signalling’
rotors with rate k0. This field evolves as

ċ = k0

N∑
i=1

δ(r− ri)− kdc+Dc∇2c+ ε(c− c0)3 (3)

where kd is the decay rate. Here, Dc is the chemical diffusion constant and the term proportional to ε prevents
unlimited growth of c in case of linear instability.

We now use Itôs Lemma and follow [1] to derive coarse grained equations of motion for the combined probability

density fi(r, θ) = δ(r− ri)δ(θ − θi). For rotors with identical frequencies Ωi → Ω we find for f(r, θ) =
N∑
i=1

fi(r, θ)

ḟ = −v0p ·∇f−G∂θ
∫

dr′dθ′f(r′, θ′)F (θ−θ′, r−r′)f(r, θ)+Dr∂
2
θf−βR|∇c|∂θ[f sin(θ+δ)]−∂θΩf−∂θ

√
2Drfξ (4)

where ξ = ξ(r, θ, t) represents unit-variance Gaussian white noise and δ = atan2(∂yc,−∂xc), with atan2(y, x) being
the (principle value of) the argument function arg(x + iy) and F (θ − θ′, r − r′) = sin(θ − θ′)δ(r − r′). The term
−∂θ
√

2Drfξ describes multiplicative noise, which we neglect in the following because we are interested in the mean
field phenomenology.

From here, we follow [2] and expand f in a Fourier series f(r, θ) =
∞∑

k=−∞
fk(r)e−ikθ with fk(r) =

∫
f(r, θ)eikθdθ

and identify f0 → ρ(r, t) and (Ref1, Imf1) → w. [3] Straightforward algebra leads to the following equation for the
Fourier coefficients:

ḟk = −v0

2
[(∂x − i∂y)fk+1 + (∂x + i∂y)fk−1]− k2Drfk +

iGk

2π

∑
m

fk−mF−mfm +
βR|∇c|k

2

(
fk+1eiδ − fk−1e−iδ

)
+ ikΩfk

(5)
For k = 0 we quickly find ρ̇ = −v0∇ ·w. To achieve a closed equation for f1 we neglect fk with k ≥ 3 and assume
that f2 is fast, i.e. we set ḟ2 → 0 (compare [2, 4]). This yields a closed equation of motion for f1 and hence for w.
This latter equation could in principle be solved numerically, but is rather involved and hardly allows us to analyse
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the interplay between chemotaxis and active rotations. To highlight this interplay within a ‘minimal model’ we apply
a second layer of approximations and directly neglect all contributions which are both nonlinear and involve gradient
terms [5]. This procedure leads to

ρ̇ = −v0∇ ·w (6)

ẇ =

(
Gρ

2
−Dr

)
w + Ωw⊥ −

v0

2
∇ρ+

βRρ

2
∇c+

v2
0Dr

b
∇2w +

(
v2

0Ω

2b

)
∇2w⊥ −

(
2G2Dr

b

)
|w2|w − G2Ω

b
|w|2w⊥(7)

ċ = k0ρ− kdc+Dc∇2c+ ε(c− c0)3 (8)

where w⊥ ≡ (−wy, wx) and b = 16D2
r + 4Ω2. Two solutions of these equations are: (i) the uniform unpolarized

state (ρ,w, c) = (ρ0,0, ρ0k0/kd), and (ii) a polarized and coherently rotating state with uniform density (ρ, w, φ, c) =

(ρ0, w
∗,Ω∗t, k0ρ0/kd) with w∗ =

√
[Gρ0 − 2Dr](Ω2/(G2Dr) + 4Dr/G2), Ω∗ = Ω(3/2−Gρ0/(4Dr)). Here, φ is defined

via w = wp with p = (cosφ, sinφ)T representing the average (collective) self-propulsion direction. If Gρ0 < 2Dr the
unpolarized state is stable. It becomes unstable in favour of the coherently rotating state when alignment interactions
are strong enough to suppress dephasing by rotational noise (Gρ > 2Dr). At the onset of polarization this state
rotates with a frequency Ω but slows down as more and more particles align.

In the main text, we focus on the regime of sufficiently strong alignment interactions and hence consider this
coherently rotating state as the relevant uniform state whose dynamics we explore in presence of chemotaxis. Also,
if self-propulsion is not too strong, the term (−v0/2)∇ρ mainly reduces the chemotactic coupling in our simulations
where we typically have c ∼ ρ and βRρ0 � v0. Hence we also omit this term for simplicity as well as ∇2 terms in
Eq. (7), which are not important at long wavelength or for almost uniform w. We now define the polarization P
which measures the degree of local alignment (per particle), as usual, via w = ρP = ρ|P|p. Since we are mainly
interested in the competition of the chemical alignment and active rotations, we do not describe spatial modulations
of the ‘average’ polarization but assume it as constant. Although, only choices of |P| � 1 are strictly consistent with
the above approximation fk>3 → 0 [2], we choose |P| = 1 for simplicity, since our results do not depend much on the
exact value of |P| as our simulations reveal.

Assuming also ω := Ω − GΩ
b w

2 ≈ Ω − GΩ
b ρ

2
0 in Eq. (7) and defining β := βR

2 , after projecting Eq. (7) onto
p̂⊥ = (− sinφ, cosφ) our minimal description of chemotactic rotors reads

ρ̇ = −v0∇ · (ρp) +Dρ∇2ρ+K∇2ρ3 (9)

φ̇ = ω + βp×∇c (10)

ċ = k0ρ− kdc+Dc∇2c+ ε(c− c0)3 (11)

In Eq. (9), we added a phenomenological term describing isotropic short ranged repulsions among colloids (K∇2ρ3),
whose main effect is to prevent strong gradients on too small scales in our simulations. While we chose here a cubic
term for convenience (retaining symmetry under ρ→ −ρ), replacing this by a quadratic term, ∇2ρ2 leads, according
to our simulations, to an almost identical phenomenology when modifying the coefficient K appropriately. Given the
complexity of the system under consideration, our description in Eqs. (9-11) is far from complete, but it highlights
the competition between chemotactic alignment and active rotations, allowing us to focus on the physical mechanism
underlying structure formation in signalling rotors. Our approach can be straightforwardly extended to derive a more
precise but rather complex coarse grained description of (chemotactic) active rotors.

2. Generalization to non-identical rotation frequencies

Here, we generalize the above approach to rotors with non-identical frequencies Ωi, i.e. we replace Ω → Ωi in
Eq. (2) and ask to which extend this alters Eqs. (9-11). Accordingly, this paragraph can be seen as an alternative to
the paragraph ‘non-identical frequencies’ in the main text.
The basic idea is to replace fiΩi by its mean plus a typical fluctuation

Ωifi −→ Ω̄f +
√

∆Ωfη (12)

where η describes Gaussian random numbers with zero mean and unit variance 〈η(r, θ, t)η(r′θ′, t)〉 = δ(r−r′)δ(θ− θ′)
and Ω̄; ∆Ω are defined by

〈ΩiΩj〉 = Ω̄2 + ∆Ωδij (13)

This replacement of course changes, in general, the dynamics of fi but not the statistical properties of a large rotor
ensemble, since the distributions {Ωifi} and {Ω̄f +

√
∆Ωfη} have identical statistical properties. (This statement
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holds true at each point in time, independent of time correlations of η).
Physically, we should understand Eq. (12) as a local replacement and interpret the above averages as mesoscopic ones
over all particles within the interaction range around a given point x rather than a global average over the whole rotor
ensemble. Accordingly, we allow Ω̄ and η to fluctuate in space and time. We now define a field ω(x, t) representing

the deviation from the global (time-independent) average rotation frequency Ω̄0 =
N∑
i=1

Ωi/N .

In the following we do not worry about the specific form of ω(x, t) but assume it to be random, with a correlation time
on the order of the ‘mixing time’, i.e. the time after which a given set of rotors in one ‘interaction domain’ is replaced
by another one. In non-synchronized states, we expect that the mixing time is on the order of the time a particle
needs to traverse a distance given by the range of the alignment interactions. As this timescale is, for the assumed
short ranged alignment interactions, short compared to all other relevant timescales in the system (1/kd, 1/k0, 1/ω)
we allow it to tend to zero for simplicity. Hence we assume ω, and analogously also η, to represent spatiotemporal
white noise. Conversely, in the synchronized regime, rotors can move together for some time and hence we expect
substantial time-correlations. As these correlations should become relevant only after the onset of synchronization we
do not need to care about them since our aim is to understand where synchronization sets in.

We now expand
√
f for modest deviations from isotropy as follows

√
f =

√√√√ ∞∑
k=−∞

fkexp[−ikθ] ≈
√
f0/2 +

1

2
√
f0

∞∑
k=−∞

fke−ikθ. (14)

Using this approximation, the only modifications of our mean field results Eqs. (6-11) due to non-identical rotor
frequencies correspond to replacing

Ω̄→ Ω̄0 + ω(x, t) (15)

Dr → Dr +

√
∆Ω

4ρ0
(16)

in these equations. Consequently, for non-identical rotors the unpolarized state becomes unstable for Gρ0 > 2Dr +√
∆Ω

4ρ0
. This is very similar to the result of the Kuramoto model (main text) which assumes a Lorentzian distribution

for the frequencies, and justifies the assumption of locally coherent rotations underlying model (9-11).

B. Nondimensionalisation and relation to experimental parameters

The parameter space of Eqs. (9-11) can be reduced to four dimensions (plus an effective density which is fixed

by the initial state) by introducing the dimensionless quantities x̃ =
√
kd/Dρx, t̃ = kdt. Defining ρ̃ = ρk0β/(kdv0),

c̃ = cβ/v0 and p̃ = v0p/
√
Dρkd we obtain (now omitting tildes)

ρ̇ = −∇ · (ρp) +∇2ρ+ κ∇2ρ3 (17)

φ̇ = Ω + p×∇c (18)

ċ = ρ− c+Dc∇2c+ ε(c0 − c)3 (19)

Here, Ω = ω/kd and Dc = Dc/Dρ determine the linear behaviour together with the effective density ρ0 which is
conserved in the course of the dynamics, while κ = Kk2

dv
2
0/(Dρk

2
0β

2) and ε = εv2
0/(kdβ

2) control non-linear saturation
effects (besides the κ term producing some contribution to the colloidal diffusion term). As a key control parameter
we identify ∆ := Ω/ρ0 = v0ω/(βk0ρ0) which measures (for given self-propulsion speed) the relative importance of
active rotations and chemotaxis.

Promising candidates to physically realize our predictions are auto-chemotactic strains of E.coli which rotate natu-
rally close to a wall or interface. Here, one could measure the initial time lag followed by a delayed onset of clustering
as an indication of the nonlinear locking instability. In addition, one could also measure the suppression of rotations
which arises exclusively at the interface between dense and dilute regions for comparatively low effective rotation
frequencies (see below) and the sudden arrest of coarsening when for larger rotation frequencies.

The parameter values used in this work (Fig. 2) correspond to typical experimental values; the most relevant
dimensionless control parameters Ω, ρ̃ and Dc translate as follows. (i) The choice Dc/Dρ = 1 approximately matches
with measurements of Dρ ∼ 2 × 10−6 − 1.5 × 10−5cm2/s and Dc ∼ 10−5cm2/s [6–9]. (ii) Our parameter choice in
Fig. 2 corresponds to ρ0βk0/kdv0 = 50 which can be matched for typical ‘chemotactic sensitivities’ of χ ∼ (1.5 −
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75) × 10−5cm2/s [6, 7] with χ ∼ βv0/(2Dr) when assuming Dr ∼ 0.1 − 1/s and rates kd ∼ 0.09/s and k0 ∼ 0.6/s
typical for the chemoattractant of Dicty (cAMP [10, 11], rates for E.coli are unknown [9]) when using systems with
> 5 × 103 bacteria per mm2 or area fractions > 0.1. (iii) The parameter Ω = ω/kd ∼ 2 for typical swimming radii
of 50µm [12] and swimming speeds of 10µm/s which is close to the value at which we observed the transition from a
large cluster to a stripe pattern; see Figs. 2i and l. Faster swimming leads to larger values of Ω and could allow to
observe the decrease of the wavelength of our travelling wave pattern. Smaller values of Ω corresponding to parameters
in Figs. 2d-f would require slower swimming velocities or faster decay (consumption) of the E.coli chemoattractant
aspartate than for cAMP. Alternatively, by working with magnetotactic bacteria which have a permanent dipole
moment or active bimetallic colloids [13], slow rotations could be easily generated by exposing these particles to an
external rotating magnetic field.

C. Reduced models and linear stability analysis

We now derive a reduced model for the rotor distribution ρ(r, t) by assuming that p is a fast variable, which is a good
approximation for the parameter regime considered in the main text. This allows us to adiabatically eliminate the
orientation equation. First, we demonstrate that in absence of active rotations and alignment interactions Ω = G = 0,
Eqs. (6-8) reduce to the well-known Keller-Segel model [14, 15] describing chemotaxis of signalling microorganisms,
and are therefore consistent with previous studies of active colloids based on this model [16–18]. In particular, the
Keller-Segel model for chemoattractive particles (β > 0) allows for cluster growth typically proceeding to phase
separation. Here, as we shall see, local alignment interactions (G > 0) will support this instability in the sense that
they allow for cluster growth already at very low particle densities. Second, we will derive a corresponding reduced
model in presence of active rotations, starting with Eqs. (1-3) in the main text. This model shows that active rotations
suppress linear instability in its complete parameter space, even if strong alignment interactions are present.

1. Keller-Segel model

Starting from Eq. (7) and adiabatically eliminating ẇ → 0 as well as neglecting gradient terms of order ∇2, with
Ω = G = 0 we find w = −v0∇ρ/(2Dr) + βρ∇c/2Dr. Plugging this into Eq. (6) leads together with Eq. (8) to the
following model which resembles the Keller-Segel model of chemotaxis (compare [14–18])

ρ̇ = − v0β

2Dr
∇ · (ρ∇c) +D∇2ρ (20)

ċ = k0ρ− kdc+Dc∇2c+ ε(c− c0)3 (21)

Here D = v2
0/(2Dr) is the effective ‘active’ diffusion constant.

Linearizing around the uniform solution (ρ, c) = (ρ0, k0ρ0/kd) and using ρ′ = ρ− ρ0, c
′ = c− c0 leads to:

ρ̇′ = −B∇2c′ +D∇2ρ′

ċ′ = k0ρ
′ − kdc′ +Dc∇2c′ (22)

where B = v0βρ0

2Dr
. We now test the stability of these equations with respect to plane wave perturbations. Fourier

transforming (22) and evaluating the respective linear stability problem we find a long wavelength instability for
Bk0 > Dkd with instability band q2 < (Bk0 −Dkd)/(DDc). This instability is based on the positive feedback loop
explained in our introduction (see main text) and hinges on aligning particles up the chemical gradient. Accordingly,
it is no surprise that local alignment interactions only help destabilize the uniform state and allow for cluster growth
already at very low effective densities. For a later comparison with the case of active rotations it is instructive to
further reduce model (22). Assuming that c′ is fast compared to the conserved colloidal field after adiabatic elimination
c′ → 0 and neglecting Dc∇2c′ Eq. (22) simplifies to

ρ̇′ = [D − (k0/kd)B]∇2ρ′ (23)

This is a closed model for the particle density close to the uniform state where chemotaxis directly competes with
the effective diffusion. This equation reproduces the correct instability criterion, but leads to a short wavelength
divergence, normally prevented by chemical diffusion.



5

2. Adiabatic solution of the Adler equation

To derive a reduced model for active rotors (Ω > 0) we need to solve Eq. (18) explicitly. Rewriting Eq. (18)

leads to the Adler equation φ̇ = Ω + |∇c| sin(φ + δ), here with δ = atan2(∂yc,−∂xc). We now solve this equation
in the adiabatic limit of fast response of φ to changes in the chemical field. Since in presence of active rotations the
collective propulsion direction p as determined by φ does not simply follow the chemical field but is determined by a
competition between chemotaxis and active rotations, we may not simply set φ̇→ 0, but need to integrate Eq. (4), MT
for a (quasi-)stationary chemical field to describe fast orientational response appropriately, i.e. we integrate the Adler
equation for temporarily fixed c, restoring its time-dependence only after integration. In this adiabatic approximation
we find (compare also [19])

φad = −atan2(∂yc,−∂xc) + 2 arctan

−|∇c|+√Ω2 − |∇c|2 tan
(√

Ω2 − |∇c|2t/2 + θ0

)
Ω

 (24)

Here θ0(x) is an integration constant that is fixed by the initial orientations of the rotors. For |∇c| < Ω (24) de-
scribes an anharmonic and anisotropic periodic oscillation. As the chemical gradient increases, the rotation frequency
decreases as

√
Ω2 − |∇c|2, i.e. p rotates slower where chemical gradients are strong.

At |∇c| = Ω the colloids cease to rotate (on average), i.e. we have a transition from rotations to locking. Here,
we have an equilibrium between chemotaxis and rotations, where rotations steer the director field away from the
‘optimal’ swimming direction up the chemical gradient (which is approached for |∇c| → ∞), and towards a direction
perpendicular to it. From Eq. (24) it is straightforward to derive the distance from the ‘optimal’ angle as

∆ := φad(Ω)− φad(Ω→ 0) = 2 arctan

[
γ

1 +
√

1− γ2

]
(25)

where we used the notation γ := Ω/|∇c|. For Ω < 1/2 we can approximate ∆ ≈ γ and conversely, for Ω close to

|∇c|, we have ∆ ≈ π/2−
√

2(Ω/|∇c| − 1). In other words, the advective particle flux up density (chemical) gradients
(∝ cos ∆) decreases slowly with increasing Ω when Ω is small, but decreases faster and faster for large Ω.

3. Linear stability of active rotors

We now use Eq. (24) to formulate a reduced model for the density of rotors whose orientation responds quickly to
changes in the chemical field. For a quasi-instantaneous orientational dynamics Eqs. (17,19) lead to

ρ̇ = ∇2ρ+ κ∇2ρ3 −∇ · (ρpad(t))

ċ = ρ− c+Dc∇2c (26)

where pad = (cos(φad), sin(φad))
T

and φad is given by Eq. (24). To understand the linear stability of the uniform
solution (ρ, c) = (ρ0, ρ0) of these equations with θ(x) = const, we choose a coordinate system with x-axis parallel to

p(t = 0), i.e. θ = arctan
[
(|∇c|+ Ω tan(δ/2))/

√
Ω2 − |∇c|2

]
and expand pad in ∂xc, ∂yc:

pad =

(
cos Ωt
sin Ωt

)
+

1− cos Ωt

Ω

(
sin Ωt
− cos Ωt

)
∂xc+

sin Ωt

Ω

(
− sin Ωt
cos Ωt

)
∂yc (27)

Hence, we obtain:

ρ̇′ = (1 + 3ρ2
0κ)∇2ρ′ −

(
cos Ωt
sin Ωt

)
∇ρ′ + sin2 Ωt+ cos Ωt− cos2 Ωt

Ω
∂x∂yc−

sin Ωt

Ω
[1− cos Ωt] ∂2

xc−
cos Ωt sin Ωt

Ω
∂2
yc

ċ′ = ρ′ − c′ +Dc∇2c′ (28)

Remarkably, the active rotations enter the linearized equations as explicitly time-dependent ‘driving’ terms. To
understand how this leads to linear stability of the uniform state, we first consider the instructive case of fast chemical
dynamics ċ→ 0, before generalizing our approach in the next paragraph. Neglecting also chemical diffusivity (Dc → 0)
which only helps stabilizing the uniform state, we have c′ = ρ′. Now using a plane wave Ansatz ρ′ = r(t)exp[−iq · x]
in Eqs. (28), Floquet theory predicts r(t) = r(0) exp[µt]g(t) [20], where g(t) is some 2π/Ω-periodic function. Here, µ
is called the Floquet exponent and serves as a linear stability parameter; if it is positive r(t) oscillates with growing
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amplitude, but for µ < 0 small density fluctuations around the uniform state decay. According to the Liouville
formula in Floquet theory [20], here µ is given by the time-average of the right hand side of Eqs. (28). Thus, we
have µ = −(1 + 3ρ2

0κ)q2 meaning that active rotations suppress the chemotactic instability, which occurs in their
absence (Eq. 23). More specifically, the time-dependent driving terms in Eq. (28) effectively suppress the impact of
self-advection on the dynamics: in the absence of rotations this leads to a spinodal instability (see Eq. 23). This
confirms the intuitive argument given in the introduction of the main text: close to the uniform state, chemical
gradients are too weak to align the swimming directions of our rotors and so rotations dominate chemotaxis. As
we discuss in the main text, this picture breaks down away from the uniform state and can give rise to a nonlinear
instability allowing for structure formation with chemically interacting rotors despite the fact that the uniform state
is now linearly stable.

4. Generalized linear stability analysis: Floquet-Magnus expansion

Finally, we generalize the linear stability analysis of the previous paragraph to cases where we may not assume that
c is a fast variable and have to account for corresponding delay effects. We first plug the Ansatz ρ′ = r(t)exp[−iq ·x],
c′ = C(t)exp[−iq · x] into Eqs. (28), which leads to(

ṙ

Ċ

)
= A

(
r
C

)
(29)

where the 2π/ω-periodic matrix A = (a)ij has the following components

a11 = −q2(1 + 3ρ2
0κ)− i[qx cos Ωt+ qy sin Ωt] (30)

a12 =
ρ0

Ω

[
qxqy(cos2 Ωt− sin2 Ωt− cos Ωt) + (q2

y − q2
x) cos Ωt sin Ωt+ q2

x sin Ωt
]

(31)

a21 = 1 (32)

a22 = −Dcq2 (33)

Denoting the fundamental matrix solution to Eq. (29) as X, we have Ẋ(t) = A(t)X(t), where X(t) = P (t)exp[tB]
with P (t+2π/ω) = P (t), according to the Floquet theorem [20]. The eigenvalues of B are the Floquet exponents µ1,2

which determine the linear stability of the present problem. From here, we follow [21] to perform a Floquet-Magnus
expansion, i.e. we expand P,B

P = exp[Λ]; Λ =

∞∑
k=1

Λk; Λk(t+ T ) = Λk(t) (34)

B =

∞∑
k=1

Bk (35)

and determine B up to order k = 2. To first order, we find

µ1 = −(1 + 3ρ2
0κ)q2; µ2 = −1−Dcq2 (36)

which suggests linear stability for all values of Ω. The general result at second order (k = 2) is more involved and its
physical meaning is not immediate; thus we perform an asymptotic expansion up to second order in ν = 1/Ω which
yields

µ1,2 = −1

2

[
1 + (1 + 3ρ2

0κ+Dc)q2 +
∣∣1 + (Dc − 1− 3ρ2

0κ)q2
∣∣]± i

2qxq
2ρ0

Ω2 |1 + (Dc − 1− 3ρ2
0κ)q2|

(37)

The real parts of µ1,2 (Lyapunov exponents) represent the average growth rate of small perturbations of the uniform
state. Thus, even if c is not a fast variable, at least for large Ω active rotations suppress linear stability. Note that
convergence of the Floquet-Magnus expansion can be shown here for large Ω when choosing the 2-norm of A to satisfy
the convergence criterion in [21].
To generalize our approach further, for small Ω we calculated the Floquet exponents µ1,2 numerically for different
portions of the parameter space. Here, we found that µ1,2 have negative real parts (linear stability of the uniform
state) in most regions of the parameter regime, even for relatively slow driving. However, interestingly, they can
become positive if the effective ρ0 is large enough and κ,Dc,Ω are sufficiently small. This demonstrates that besides
the nonlinear instability mechanism we discussed in the main text, also delay effects in the response of c to changes in
ρ could provide a route to structure formation in slowly rotating chemically interacting particles. Although this linear
route to structure formation applies only to a restricted subset of the parameter space, it could be an interesting topic
for further investigations.
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D. Videos

Video 1 shows the dynamics of signalling rotors at short and intermediate times for Ω = 0 (this corresponds to
Fig. 2a-c, main text); Ω = 1.2 (Fig. 2g-i); Ω = 2.2 (Fig. 2j-l) and Ω = 7. Initial states are identical in all four cases.
The two latter cases (Ω = 2.2 and Ω = 7) lead to travelling wave patterns on timescales beyond the ones shown in the
video. Other parameters are chosen as in Fig. 2. Videos 2,3,4 show the rotor dynamics (ρ and p) on comparatively
long timescales for Ω = 0.25 (This case corresponds to Fig. 2d-f, but for larger system size), Ω = 1.2 (g-i) and Ω = 2.2
(j-l), respectively. Video 5 shows c and p for parameters as in Fig. 2d-f and comparatively short timescales.
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