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Diffuse Interface Model and Hydrodynamics

The drop spreading process is simulated using a stan-
dard approach to describe the dynamics of binary fluid
systems. An order parameter ψ is defined as the nor-
malised difference in density to distinguish the two fluids.
The model is a coupled system of equations comprising
Cahn-Hilliard equation (CHE) describing the evolution
of the order parameter and the Navier-Stokes equation
(NSE) describing the hydrodynamics for an incompress-
ible fluid [1–4],

∂tψ +∇· (uψ) = ∇· (M∇µ) (1)

∂t(ρu) +∇· (ρuu) = −∇p+ η∇2u+ ψ∇µ (2)

together with the continuity equation for the density. In
the above, p stands for the pressure, η is the shear viscos-
ity. Here the mobilityM relates the order parameter flux
and the chemical potential gradient driving the diffusion.
While the order parameter is advected by the flow field
in Eq. 1, the gradients in the order parameter give rise
to forces driven by chemical potential, and extra stresses
appear in the NSE, Eq. 2 [5].
The equilibrium thermodynamics of the fluid is de-

scribed by the Landau free-energy functional [1, 6]
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with A < 0, B > 0 and r stands for the spatial di-
mensions. Two uniform solutions ψ = ±

√

A/B coex-
ists across a fluid interface for this free energy functional
form. The interfacial thickness

ξ =
√

2K/A (4)

and the interfacial energy

γ =
2

3

√

2KA3/B2 (5)

are controlled by three parameters A, B, and K [2]. Here
µ = Aψ + Bψ3 −K∇2ψ is the chemical potential.
We use a hybrid algorithm by combining the lattice

Boltzmann (LB) method for hydrodynamics and method
of lines for the order parameter dynamics [7]. Force den-
sities such as the divergences of order parameter stresses
are included in the modified LB method used here [8].

We use a D3Q15 model and collision integral is a single
relaxation time (τ) approximation. The viscosity is ob-
tained as η = τc2s where cs = 1/

√
3 is the sound speed

in LB units. The spatial discretization of the CHE is
based on a finite-volume formulation [9] and this set of
equations is temporally integrated using a Runge-Kutta
algorithm. The interested reader is referred to [7] for a
detailed description of this method.
The wall is placed at the 1

2
location, as is usual in

the bounce back schemes used to represent wall in LB
method [10]. Desired contact angles are obtained as dis-
cussed in [11, 12]. In short, the solid-fluid surface tension
is introduced by defining free energy functional of the
form C

2
ψ2
s +Hψs where ψs is the value of order param-

eter at the wall. Minimization of the energy functional
near the wall gives Cψs+H = K∇ψ ·n where n is normal
to the wall. By tuning the parameters C and H we can
modify the properties of the surface. It is found suffi-
cient to retain only the linear term of the surface energy
functional [11, 12]. We use a second order central differ-
ence formula to calculate the normal derivative of order
parameter at the wall.
We have used the following definition and method to

determine the interface and contact line. We define the
interface between the two fluids to be where the order
parameter, ψ = 0 and extract the shape of the drop at
every time step as the contour line of ψ = 0. Consistent
with our quasi-steady assumption of the evolution of the
drop, we fit an equation of a circle on this contour and
calculate the contact radius and contact angle. However,
we have verified that our results are independent of the
(i) definition of interface and (ii) the procedure adopted
to calculate the instantaneous contact radius and contact
angle. At long times, the drop reaches equilibrium and
one may then obtain static contact angle. It is possible to
analytically calculate the static contact angle as a func-
tion of H from the theory proposed above using a free
energy minimisation as described in [11, 12]:

cos θ =
1

2

[

(1 + h)3/2 − (1 − h)3/2
]

. (6)

where H is redefined as h = H
√

2/KB. We have
compared our computational results with this expression
for a satisfactory match.
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FIG. 1. Asymptotic behaviour is same for drop spreading with
three different initial conditions: (i) drop shape as part of a
circle with θ = 45◦, (ii) a semicircular drop with θ = 90◦ and
(iii) a full circle with θ = 180◦. Algebraic growth followed by
exponential relaxation may be observed in all cases. In these
simulations θe = 30, η = 0.15, ηr = 1,M = 0.1, σ = 9.4×10−4

The late stage dynamics of the drop is unaffected by
the choice of initial shape of the drop. We show this ex-
plicitly in Fig. 1. Tests were done with three different
initial conditions (i) drop shape as part of a circle with
initial contact angle θ = 45◦, (ii) a semicircular drop with
initial contact angle θ = 90◦ and (iii) a circular drop with
initial contact angle θ = 180◦. Case (i) has the largest,
case (ii) has intermediate and case (iii) has negligible ini-
tial contact area. Results of these simulations are shown
in Fig. 1. It may be seen that after the initial transients
the drop spreads analogously in all the cases implying
that the initial conditions are not important in studying
the long term spreading behaviour.
More results from numerical simulations

We have varied the relevant parameters of interest over
a wide range. Here. Figs. 2-5 show the spreading kinetics
for a wide range of dimensionless parameters. Specifi-
cally, Reynolds number varies from O(10−5) to O(10),
Capillary number varies from O(10−5) to O(0.1) and
Ohnesorge number varies from O(10−3) to O(10). It may
be helpful to note that in various drop spreading experi-
ments in the reported literature, Oh varies from O(10−3)
to O(0.1), which we have covered in our simulations. As
observed in the plots, for the case of θe = 20◦ we find

TVH and then a transition to the exponential regime
in all the cases except when inertia becomes important.
Large Re numbers and small Oh number indicate the
regime where inertia becomes relevant in spreading ki-
netics. We then see systematic deviations from TVH and
even non-monotonic spreading as shown in Fig. 5. In the
case of θe = 60◦, TVH completely disappears, and we
find spreading faster than that predicted by TVH and
then an exponential regime as shown in Fig. 2(b) and
Fig. 3(b). This is same as the behaviour that we illus-
trate via Eq. 4 and Fig. 3 in our manuscript. Again, when
inertial effects become important, as shown in the first
case in Fig. 3(b), we observe deviations and non mono-
tonic spreading behaviour consistent with observations
in [13]. Also, high Reynolds number may not be a rel-
evant regime experimentally for drops typically smaller
than capillary length.
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(a) θe = 20◦
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FIG. 2. As surface tension increases,the driving force increases and the spreading is faster. Other parameters used are η = 0.15
and M = 0.1. (a) For θe = 20◦. TVH is followed by exponential relaxation. The smallest surface tension, σ = 0.000094,
demands large computational time to reach final stages of spreading. The second case σ = 0.00094 is used in Fig. 1(c) in the
main paper. (b) For θe = 60◦, which does not show TVH law, is also shown for comparison.
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(a) θe = 20◦
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FIG. 3. As viscosity increases, spreading is slower, as expected. Other parameters used are M = 0.1, σ = 9.4 × 10−4. (a) For
θe = 20◦. TVH law, and the transition to exponential regime can be observed. The first case, η = 0.015 is shown in Fig 1(a)
of the manuscript. (b) For θe = 60◦ is also shown for comparison.
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FIG. 4. Here viscosity of the drop and the surrounding
fluid is changed independently. ηr is defined as the ratio of
the viscosity of the drop to that of the external fluid. As
ηr increases, spreading becomes faster. Parameters used in
these simulations are θe = 20◦, η = 0.15 (surrounding fluid),
M = 0.1, σ = 9.4× 10−4. TVH law, and then the transition
to non-algebraic relaxation can be observed.
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FIG. 5. Effect of inertia on the rate of spreading. When sur-
face tension increases, after a point inertial effects become
important giving rise to deviations from Tanner’s law, and
even nonmonotonic rate of spreading. Parameters used are
θe = 20◦, M = 1, η = 0.015.

Effect of various parameters on the spreading process: Ohnesorge number, Oh =
√

Ca/Re = η/
√

(hσρ) is defined in
each case where Ca = ηU/σ is the capillary number and Re = ρUh/σ is the Reynolds number. The spreading speed at the

beginning of the algebraic growth is used as the characteristic velocity U , which continuously decreases as spreading proceeds.
h is the initial height of the drop, η is the viscosity, σ is the surface tension and ρ is the density of the fluid.


