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Comments on the Theoretical Approach 

In this work, we study the swelling of hydrogel nanofilms in the presence of an external electric field. For this 

purpose, we use a theory that accounts for size, shape, conformation and charge distribution of all molecular 

components, in particular the polymer backbone. This molecular theory is described in our recent work, where we 

have considered the swelling of the same hydrogel nanofilms under no external electric fields.1 The only 

difference in the theoretical formalism that we have introduced here to investigate film behavior under an applied 

voltage is the boundary condition of the Poisson Equation at the grafting surface. An applied voltage, 𝛥𝑉, fixes 

the value of the electrostatic potential at the grafting electrode, 

 𝛹 𝑧 = 0 = 𝛥𝑉 (S1) 

where 𝛹 𝑧  is the local electrostatic potential. The Cartesian coordinate z measures the distance from the grafting 

electrode, which is placed at 𝑧 = 0. We make the assumption that the system is homogeneous in the x-y plane. 

The second boundary condition that we impose when solving the Poisson Equation is  

 lim
!→!

𝛹 𝑧 = 0 (S2) 

which implies that the distant electrode is far from the film, in the bulk solution. 

The area density of charge that establishes on the metallic surface of the grafting electrode, 𝜎!, can be 

calculated using Gauss’ law and the fact that the electric filed is zero inside the conducting material, which leads 

to 

 
𝜎! = 𝜖!

𝑑𝛹 𝑧
𝑑𝑧 !!!

 (S3) 

where 𝜖! denotes the dielectric permittivity of the medium (water). Note that we do not explicitly impose the 

charge density on the surface, but it results from the solution to the Poisson equation subject to the boundary 

conditions given by Eq. S1 and S2. 

On the contrary, when no external electric field is applied to a film supported by a dielectric surface, the density 

of charge at the grafting surface must be zero. In this situation, assuming that the dielectric medium extends deep 
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enough under the film, the first boundary condition for the Poisson equation results from setting 𝜎! ≡ 0 in Eq. 

S3, 

 𝑑𝛹 𝑧
𝑑𝑧 !!!

= 0 (S4) 

Full description of the theoretical framework and the numerical methodology employed to solve the resulting 

equations can be found in the Supporting Information for Longo et al.1, not only for zero surface charge 

conditions but also for an applied voltage. Numerical calculation of results using this method requires defining a 

molecular model for all species that compose the system, including the polymer network. Here, we use the same 

molecular model described in our previous work.1  

 

Additional Results 

Figure S1 shows film thickness, ℎ!"#, as a function of 𝑝𝐻 and applied potential for low and high salt 

concentration solutions. These three-dimensional plots represent the same results as Fig. 2A and D of the article, 

respectively. 

 
Fig. S1 Plot of film thickness as a function of solution pH and applied voltage for two different salt concentrations. 
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The ionic strength inside the hydrogel film can be calculated using the concentrations adsorbed ions, 

 
𝐼! =

1
ℎ!"#

 𝑖 𝑧  𝑑𝑧
!!"#

!!∈ !!,!!!,!,!

, (S5) 

where 𝑖 𝑧  is the local molar concentration of ionic species 𝑖. In the last equation, we have omitted charge 

numbers because all ionic species are monovalent. Similarly, we can calculate the average concentration of 

adsorbed sodium ions as 

 
𝑁𝑎! =

1
ℎ!"#

 𝑁𝑎! 𝑧  𝑑𝑧
!!"#

!
. (S6) 

Figure S2 shows the ionic strength inside the hydrogel, and average concentration of adsorbed sodium ions as a 

function of 𝑝𝐻 for different applied voltages and zero surface charge. Within the range of voltages considered in 

this work, the ionic strength inside the film is relatively similar to that established for zero surface charge (see 

Figs. S2A and C). The most significant differences can be observed at low 𝑝𝐻 and 𝑐! = 0.1𝑀 for both the most 

positive and negative applied voltages, 𝛥𝑉 = 100𝑚𝑉 and −100𝑚𝑉, respectively (black and purple lines in Fig. 

S2C). However, relative differences in 𝐼! under these conditions are less than 5% (= !.!"#!!!.!!
!.!!

×100%). 

When 𝑝𝐻 increases above 𝑝𝐾𝑎 = 5, ionic strength of the film increases. At low salt concentration, the relative 

change from the local minimum around 𝑝𝐻 4 to the plateau at higher 𝑝𝐻, ranges from roughly 1567% (from 

0.003𝑀 to 0.05𝑀) for 𝛥𝑉 = −100𝑚𝑉 to 2567% (from 0.0015𝑀 to 0.04𝑀) for 𝛥𝑉 = 100𝑚𝑉, and 3233% 

(from 0.0015𝑀 to 0.05𝑀) for 𝜎! ≡ 0 (see Fig. S2A). At high salt concentration, these relative changes are 

roughly 11% (from 0.105𝑀 to 0.117𝑀) for 𝛥𝑉 = −100𝑚𝑉, 6% (from 0.105𝑀 to 0.112𝑀) for 𝛥𝑉 = 100𝑚𝑉, 

and 12% (from 0.1𝑀 to 0.112𝑀) for 𝜎! ≡ 0 (see Fig. S2C). 



 

 

 
Fig. S2 Plot of ionic strength inside the film (top panels, A and C) and concentration of adsorbed counterions (bottom panels, B and D) as a 

function of 𝑝𝐻 for different applied voltages (solid lines) and zero surface charge (dashed black line). Low and high salt concentration 
solutions are shown in the left- and right-hand side panels, respectively. These plots correspond to the same conditions as Fig. 2. 

 
Fig. S3 Plot of local pH as a function of distance from the grafting surface at 𝑝𝐻 7 and 𝑐! = 0.001𝑀. Solid lines represent different applied 

voltages, while the dashed black line corresponds to zero surface charge. 

 We define local pH using: 

 𝑝𝐻 𝑧 = − log!" 𝐻! 𝑧 , (S7) 

where 𝐻! 𝑧  is the local concentration of protons. Figure S3 shows 𝑝𝐻 𝑧  at 𝑝𝐻 7 and low salt concentration 

for different applied potentials and zero surface charge. We have arbitrarily chosen these solution conditions, but 

the following discussion is completely general. 
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We see four distinct regions (intervals of 𝑧) in Fig. S3. Far from the surface (large 𝑧), local pH approaches 

solution pH (𝑝𝐻 7). Inside the film but sufficiently far from the surface (𝑧 > 𝑧!), a lower local pH establishes, 

which can be quantified using its average, 

 
𝑝𝐻!"# =

1
ℎ!"#

𝑝𝐻 𝑧
!!"#

!!
. (S8) 

Between the interior of the film and the bulk solution, an interfacial region is observed where 𝑝𝐻 𝑧  smoothly 

transitions from 𝑝𝐻!"# to bulk pH. The extension and other features of this interfacial region depend strongly on 

the salt concentration.2 In all these regions (i.e., 𝑧 > 𝑧!), local pH is not very sensitive to a voltage applied 

between the grafting electrode and the bulk solution. However, in the region nearest the surface the situation is 

completely different. Local pH strongly depends on the applied voltage as seen in the upper inset of Fig. S3. In 

particular, immediately above the electrode, pH can be controlled using the applied voltage (as seen in Fig. 5) 

without altering 𝑝𝐻!"#. Note that when 𝜎! ≡ 0, 𝑝𝐻(𝑧 = 0) and 𝑝𝐻!"# must be similar, within the local 

fluctuation occurring inside the film, which can be seen in Fig. S3. 

Figure S4 shows the drop in pH inside the hydrogel, 𝛥𝑝𝐻 = 𝑝𝐻!"# − 𝑝𝐻, as a function of 𝑝𝐻 and applied 

potential for low and high salt concentration solutions. These plots are three-dimensional representations of the 

same results as Fig. 4 of the article. 

 
Fig. S4 Plot of the drop in pH inside the film as a function of solution pH and applied voltage for low (top) and high (bottom) salt 

concentration. These plots are a different representation of the results presented in Fig. 4. The transparent yellow surface represents the 
drop in pH when the surface boundary condition is 𝜎! ≡ 0, which is independent of 𝛥𝑉 (black dashed line in Fig. 4). 
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Figure S5 shows the excess surface pH with respect to the bulk solution, 𝛥𝑝𝐻!"#$ = 𝑝𝐻 𝑧 = 0 − 𝑝𝐻, as a 

function of 𝑝𝐻 and applied potential for low and high salt concentration solutions. These plots are three-

dimensional representations of the same results as Fig. 5 of the article. 

 

 
Fig. S5 Plot of excess surface pH (with respect to the bulk solution), 𝛥𝑝𝐻!"#$, as a function of applied voltage and solution pH. The 

transparent red surface corresponds to 𝜎! ≡ 0 boundary conditions, where 𝛥𝑝𝐻!"#$ is independent of 𝛥𝑉 (black dashed line in Fig. 5). 

 The excess surface pH seems to have a (roughly) linear dependence on the applied potential. This behavior can 

be easily explained using a simple model. For the free species, let us assume that all density changes are due to 

variations of the electrostatic potential. Then, these densities can be calculated using the Maxwell-Boltzmann 

distribution. In particular, the density of protons immediately above the surface, 𝜌!"#$!! , we be expressed as 

 𝜌!"#$!! = 𝜌!"#$!! 𝑒!!"#$ (S9) 

where 𝜌!"#$!!  is the proton density in the bulk solution. Following the definition given by Equation S7, we obtain: 

 
𝑝𝐻!"#$ = 𝑝𝐻 + 𝐶𝛥𝑉 

(S10) 

where 𝐶 is a positive constant. Then, 

 
𝛥𝑝𝐻!"#$ = 𝐶𝛥𝑉 

(S11) 

which explains the roughly linear dependence of the excess surface pH on the applied potential. 
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