Orientational order and translational dynamics of magnetic particle assemblies in liquid crystals

Stavros D. Peroukidis and Sabine H.L. Klapp

Institute of theoretical Physics, Secr. EW 7-1, Technical University of Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany

This supplementary information is organized in three sections: In Sec. I we present the orientational order parameter we are using in the main manuscript. Representative calculated pair correlation function g(r) is given in Sec. II. Dipole-Dipole autocorrelation function is provided in Sec. III.

I. ORIENTATIONAL ORDER PARAMETER

The orientational order in the Liquid crystalline (LC) matrix is quantified by the nematic order parameter $S^{(a)}$ (with a=r,s for rods and spheres, respectively). The $S^{(a)}$ is obtained by the ordering matrix[1],

$$\boldsymbol{Q}_{\rm bc}^{\rm a} = \sum_{i=1}^{N_{\rm a}} \left[3 \left(K_i^{\rm a} \right)_{\rm b} \left(K_i^{\rm a} \right)_{\rm c} - \delta_{\rm bc} \right] / 2N_{\rm a} \tag{1}$$

where $\mathbf{b}, \mathbf{c} = x, y, z$ (cartesian components) and $K_i^{\mathbf{a}}$ is the cartesian component of the symmetry axis of rods. Diagonalization of this tensor yields the eigenvalues, S_+ , S_0 and S_- and the corresponding eigenvectors that determine a principal axes frame. The eigenvector of the largest eigenvalue, S_+ , is the director $(\hat{\mathbf{n}}_r)$ of the nematic state. The orientational order parameter is $S^{(\mathbf{a})} = S_+$.

For the construction of the ordering matrix of each cluster we note that the summation in Eq. (1) runs over the number of DSS particles of that cluster, and K_i^{a} is the cartesian component of dipolar sphere (along the direction of μ). The extracted eigenvalues are shorted as $S_{+}^{cl} > S_{0}^{cl} > S_{-}^{cl}$, giving the corresponding eigenvectors $\hat{\mathbf{n}}_{+}^{cl}$, $\hat{\mathbf{n}}_{o}^{cl}$ and $\hat{\mathbf{n}}_{-}^{cl}$ (i.e the local principal axes frame of that cluster).

II. PAIR CORRELATION FUNCTION

We have used the pair correlation function for the characterization of the positional order of the DSS particles[2, 3]

$$g(r) = \left\langle \frac{\sum_{i \neq j} \delta(r - r_{ij})}{\Delta V \rho \left(N_{\rm s} - 1\right)} \right\rangle,\tag{2}$$

where ΔV is the volume of a spherical shell. Representative g(r) are shown in Fig. 1.

FIG. 1. (Color online) Pair correlation function g(r) at various states: $[(T^*, \rho^*) = (1.2, 0.34)]$ -black-(isotropic state), $[(T^*, \rho^*) = (1.4, 0.44)]$ -red-(N_u state) and $[(T^*, \rho^*) = (1.2, 0.44)]$ -green-(N_u state).

III. DIPOLE-DIPOLE AUTOCORRELATION FUNCTION

FIG. 2. (Color online) Single particle dipole-dipole time autocorrelation function C(t) at various states: $[(T^*, \rho^*) = (1.1, 0.44)]$ –blue–(SmB state), $[(T^*, \rho^*) = (1.2, 0.44)]$ –green–(N_u state) and $[(T^*, \rho^*) = (1.4, 0.44)]$ –red–(N_u state).

We have also calculated the single particle time correlation function (dipole-dipole auto-correlation function)

$$C(t) = \frac{1}{3N_s} \Big\langle \sum_{i=1}^{N_s} \hat{\mu}_i(t) \cdot \hat{\mu}_i(0) \Big\rangle, \tag{3}$$

which is shown in Fig. 2. We have considered three representative states for which C(t) decays to zero for the simulation time runs.

- P. J. Camp, M. P. Allen, and A. J. Masters, J. Chem. Phys. **111**, 9871 (1999).
 S. McGrother, D. Williamson, and G. Jackson, J. Chem. Phys. **104**, 6755 (1996).
 R. Berardi and C. Zannoni, J. Chem. Phys. **113**, 5971 (2000).