Intrinsic Nonlinearities in the mechanics of hard sphere suspensions

Mansi A. Kumar^a, R. H. Ewoldt^b, C. F. Zukoski^c

^aDepartment of Materials Science and Engineering, UIUC; ^bDepartment of Mechanical Science and Engineering, UIUC; ^c Department of Chemical and Biological Engineering, University at Buffalo

SUPPLEMENTAL FIGURES

Fig S1 (a) and (b): Linear viscoelastic response of colloidal suspension following the rheological behavior predicted by using two-body theory

Fig S2: Linear viscoelastic response as a function of frequency on the right axis. On the left axis, $\frac{G'}{\omega G''}$ has been plotted that tends to λ_{α} when $\omega \to 0$. In (a) λ_x has also been shown for $\phi = 0.535$.

Fig S3 : Intrinsic nonlinearities as a function of applied frequency

Fig. S4: Intrinsic nonlinearities, $[e_1]$ and $[v_1]$ extracted from Koumakis et al, *Soft Matter*, 2012²⁷