Electronic Supplementary Information

Unexpected Segmental Dynamics in Polystyrene-Grafted Silica Nanocomposites

Yu Lin, Langping Liu, Dongge Zhang, Yuanbiao Liu, Aiguo Guan, Guozhang Wu*

Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials

Science and Engineering, East China University of Science and Technology,

Shanghai 200237, China

Table S1 Formulations of silica NP-filled PS and PMMA nanocomposites

Fig. S1 Classical composite morphology diagram created based from ref. 13: $\sigma \cdot N^{0.5}$ as a function of $1/\alpha$ with $\alpha = N/P$. Points, adapted from the literature, are coded symbol, wherein open square symbols (\Box) correspond to well-dispersed particles (WD); solid circle symbols (\bullet), phase separated samples (PS); solid triangle symbols (\blacktriangle), strings (S); open triangle symbols (∇), connected sheets (CS); and solid diamond symbols (\blacklozenge), small clusters (SC). Number-labeled color symbols 1 and 2 represent the respective spatial distribution of SiO₂-PS particles in PS and PMMA nanocomposites investigated in this study.

Fig. S2 Schematic for synthesis of SiO₂-PS composite particles via miniemulsion polymerization.

Fig. S3 TEM images of unmodified SiO_2 -filled PS (a), PMMA (b), SiO_2 -PS composite particle filled PS (c), and PMMA nanocomposites (d) after annealing at 423 K for 120 h. The content of silica NPs is 5 wt%.

Fig. S4 Frequency dependence of dielectric loss for pure PS (a), SiO₂-filled PS (b) and SiO₂-PS-filled PS nanocomposites (c, d) at various temperatures.

Fig. S5 DSC curves of pure PS and its nanocomposites (a), pure PMMA and its nanocomposites (b) at the heating rate of 10 K/min. The solid lines show the position of T_{g} .

Fig. S6 Frequency dependence of dielectric loss for pure PMMA (a), SiO₂-filled PMMA (b) and SiO₂-PS-filled PMMA nanocomposites (c, d) at various temperatures.

Fig. S7 Derivative spectra of PMMA nanocomposites filled with SiO_2 (a) and SiO_2 -PS composite particles (b) at various temperatures.

^{*} Corresponding author. Tel.: +86-21-64251661, E-mail: wgz@ecust.edu.cn (G. Wu).

Table S1 Formulations of silica NP-filled PS and PMMA nanocomposites

Sample code	Polymer matrix	Silica NP type	Silica NP content ^a
PS/SiO ₂	PS	Bare	5 wt%
PS/SiO ₂ -PS	PS	PS grafted	5 wt%
PMMA/SiO ₂	PMMA	Bare	5 wt%
PMMA/SiO ₂ -PS	PMMA	PS grafted	5 wt%

^aFor SiO₂-PS-filled nanocomposites, the silica NP content is excluding grafted PS chains.

Fig. S1 Classical composite morphology diagram created based from ref. 13: $\sigma \cdot N^{0.5}$ as a function of $1/\alpha$ with $\alpha = N/P$. Points, adapted from the literature, are coded symbol, wherein open square symbols (\Box) correspond to well-dispersed particles (WD); solid circle symbols (\bullet), phase separated samples (PS); solid triangle symbols (\blacktriangle), strings (S); open triangle symbols (\bigtriangledown), connected sheets (CS); and solid diamond symbols (\blacklozenge), small clusters (SC). Number-labeled color symbols 1 and 2 represent the respective spatial distribution of SiO₂-PS particles in PS and PMMA nanocomposites investigated in this study.

Fig. S2 Schematic for synthesis of SiO₂-PS composite particles via miniemulsion polymerization.

Fig. S3 TEM images of unmodified SiO_2 -filled PS (a), PMMA (b), SiO_2 -PS composite particle filled PS (c), and PMMA nanocomposites (d) after annealing at 423 K for 120 h. The content of silica NPs is 5 wt%.

Fig. S4 Frequency dependence of dielectric loss for pure PS (a), SiO_2 -filled PS (b) and SiO_2 -PS-filled PS nanocomposites (c, d) at various temperatures.

Fig. S5 DSC curves of pure PS and its nanocomposites (a), pure PMMA and its nanocomposites (b) at the heating rate of 10 K/min. The solid lines show the position of T_{g} .

Fig. S6 Frequency dependence of dielectric loss for pure PMMA (a), SiO_2 -filled PMMA (b) and SiO_2 -PS-filled PMMA nanocomposites (c, d) at various temperatures.

Fig. S7 Derivative spectra of PMMA nanocomposites filled with SiO_2 (a) and SiO_2 -PS composite particles (b) at various temperatures.