
Supplementary material for ”Tuning knots abudance in semiflexible chains with
crowders of different size: a Monte carlo Study of DNA chains”

Giuseppe D’Adamo1, Giovanni Dietler2 and Cristian Micheletti1
1 SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy and
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I. MATERIALS AND METHODS

A. Details about the optimization of the linear charge density

In order to establish a reliable estimate of the linear charge density λ we need an experimental quantity which
can be related to the fine details of the interactions. One possibility, widely explored in the past1,2, is to determine
the potential interaction parameters from the experimental measurement of the second virial coefficient, B2, which
parametrizes the expansion of the osmotic pressure at the second order in the chain concentration. For molecular
systems B2 admits a simple integral definition of the form5

B2 = −1

2

∫
dR〈e−

∑L
ij βvinter(rij) − 1〉Rcm,1=0;Rcm,2=R, (1)

where 〈·〉Rcm,1=0;Rcm,2=R denotes the average over all the configurations of two polymers whose centers of mass are

held fixed in the origin and in R respectively, and
∑L
ij vinter represents the total intermolecular potential energy

between the two chains which depends on the specific choice of λ.
One of the most common ways to access to this quantity is by means of static light scattering (SLS) experiments in

which the following combination A2 = NA/M
2
wB2 is usually measured, NA and Mw being the Avogadro number and

chain molecular weight respectively. In what follows we will consider the SLS measurements of A2 for short fragments
of dsDNA of contour length 56.4nm and molecular weight Mw = 1.1× 105g mol−1 in an aqueous solution at various
concentrations of NaCl ranging from 0.5 to 0.002mol l−1, see Ref. 3.
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FIG. S1: Main Panel: Second virial combination A2 from experiments and from MC simulations of the interacting chain model
introduced in the main manuscript. The dashed line represents the virial coefficient for a linear tangent hard spheres chain
(LTHS) of 23 sites of diameter σ = 2.5nm. In the inset we report the relative square error as a function of the effective linear
charge density at a fixed ionic strength equal to 0.1mol l−1.

From the theoretical side, the estimate of B2 was obtained considering a model chain of 23 interaction sites, fixing
the potential parameters as discussed in the manuscript. Monte-Carlo (MC) simulations, employing standard pivot
and crankshaft moves4, and the efficient algorithm for the calculation of B2 described in Ref. 6 were used. The optimal

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2016



2

linear charge density was finally obtained by minimizing the least squares relative error

χ2
rel(λ) =

1

Nd

Nd∑
α=1

(A2,sim(λ,Iα)−A2,exp(Iα))
2

A2
2,exp(Iα)

, (2)

where the summation runs over all the data available for the different ionic strengths, A2,exp(Iα) is the experimental
value for A2 at the generic ionic strength Iα and A2,sim(λ, Iα) is the corresponding value obtained from Monte Carlo
(MC) simulations for a given choice of λ. In Fig. S1 we display the predictions for A2 by using the optimal value of
λ at various ionic strengths and also χ2

rel(λ) as a function of λ at I = 0.1mol l−1.
Finally, it is also interesting to notice how, for the highest ionic strength considered, the second virial coefficient

can be well approximated by the analogous quantity for a rigid chain of m tangent spheres of diameter d = 2.5nm
without electrostatics, for which an analytical prediction is known7

A2 =
NA
M2
w

πσ3

6

(
1.38784(m− 1)2 +

11m− 3

2

)
. (3)

Indeed, considering m = 23 and σ = 2.5 as before, we find A2 = 0.324 × 10−6mol l g−2 in good agreement with
both the simulation results, obtained considering a semi flexible fragment at I = 0.5mol l−1, and the corresponding
experimental value, see Fig S1. This evidence provides a posteriori a further independent justification of our choice
of taking σ = 2.5nm.

II. ADDITIONAL RESULTS

A. Monte Carlo results for the chain compaction and the knotting probability for the interacting chain
model

In this section we collect the explicit MC results for the chain size and the knotting probability as computed for
the interacting chain model in the presence of hard spheres of various size at volume fraction φc = 0.3.

TABLE I: Monte Carlo results for the root mean square gyration radius Rg =
√
〈R2

g〉 and the knotting probability Pk% for
colloids of various size at φc = 0.3. We also report the results for the reference isolated chain case.

dc[nm] Rg[nm] Rg/R
0
g Pk% Pk/P

0
k

29.955 230.5(15) 0.977(6) 3.4(2) 2.0(1)
44.93 223.3(2) 0.946(1) 4.71(7) 2.72(6)
56.17 217.4(2) 0.921(1) 5.95(8) 3.44(7)
74.89 209.4(2) 0.887(1) 7.19(8) 4.16(8)
112.33 200.5(2) 0.849(1) 7.47(8) 4.32(8)
149.775 199.2(2) 0.844(1) 6.31(8) 3.65(7)
224.66 203.5(1) 0.862(1) 4.33(4) 2.51(4)
299.55 209.1(2) 0.886(1) 3.41(6) 1.97(4)
449.325 216.2(1) 0.916(1) 2.64(4) 1.53(3)
673.99 222.6(2) 0.943(1) 2.29(5) 1.32(4)

Isolated Chain 236.02(6) 1 1.73(1) 1
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TABLE II: Monte Carlo results for the root mean square gyration radius Rg,knotted of the knotted chains for colloids of various
size at φc = 0.3. As a term of comparison, we also report the data for the reference isolated chain case.

dc[nm] Rg,knotted[nm] Rg,knotted/R
0
g,knotted Rg,knotted/Rg

29.955 198(3) 1.00(2) 0.86(2)
44.93 187.4(8) 0.949(6) 0.839(4)
56.17 180.8(7) 0.916(5) 0.832(4)
74.89 172.0(5) 0.871(4) 0.821(3)
112.33 165.5(6) 0.838(4) 0.825(3)
149.775 164.3(6) 0.832(5) 0.825(4)
224.66 169.4(4) 0.858(4) 0.832(3)
299.55 175.6(8) 0.889(6) 0.840(4)
449.325 181.0(6) 0.917(5) 0.837(3)
673.99 186(1) 0.942(7) 0.836(5)

Isolated Chain 197.45(38) 1 0.837(2)
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B. Dependence of the abundance of the dominant topologies on the crowder size
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FIG. S2: Abundance of trefoil knots (31) as a function of the crowder diameter.
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FIG. S3: Abundance of figure eight knots (41) as a function of the crowder diameter.
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C. Long wavelength limit of the polymer structure factor

In this section we show the long wavelength limit of the polymer structure factor. Specifically, we focus on the
range of wavevectors kR0

g . 1 where F̃ (k) = (kR0
g)

2/L2
∑
i<j e

ik·rij can be approximated as8

F̃ (k) = (kR0
g)

2[1− (kRg)
2/3 + ...]

= (kR0
g)

2 − αg(kR0
g)

4/3 + ..., (4)

where αg = (Rg/R
0
g)

2. Results for the isolated chain (αg = 1), the optimal crowder case (αg ≈ 0.721) and the confined
chain case with the same degree of chain compaction are reported in Fig. II E.
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FIG. S4: Kratky Form of the polymer scattering function in the long wavelength limit. All the cases considered approaches to
the expected analytical behavior of Eq. 4.

D. Knotting probability as a function of the distance between the crowders
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FIG. S5: Relative enhancement of the knotting probability, Pk/P
0
k−1, as a function of the dimensionless combination x = R0

g/D,
D being the average crowders separation. Data points for various size of the colloids are reported together with best-fits of the
form ∝ xβ displayed as dashed lines. We numerically found β to vary in the interval [1.6 : 2.3].
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E. Monte Carlo results for the chain compaction and the knotting probability for the ideal chain model

In this section we collect the explicit MC results for the chain size and the knotting probability as computed for
the phantom chain model in the presence of hard spheres of various size and volume fraction.

TABLE III: Monte Carlo results for the root mean square gyration radius Rg =
√
〈R2

g〉 and the knotting probability Pk% for
colloids of various size at volume fractions in the interval φc = [0.05, 3]. For the chain in the absence of colloids we measured
R0
g = 224.11(5)nm and P 0

k = 5.10(2)%.

dc[nm] φc Rg/R
0
g Pk% Pk/P

0
k

449.325 0.05 0.9896(6) 5.30(3) 1.04(1)
0.10 0.9776(6) 5.57(4) 1.09(1)
0.15 0.9625(6) 5.91(4) 1.16(1)
0.20 0.9477(6) 6.20(4) 1.21(1)
0.25 0.9295(6) 6.83(4) 1.34(1)
0.30 0.9087(6) 7.44(4) 1.46(1)

224.66 0.05 0.9796(7) 5.60(4) 1.10(1)
0.10 0.9582(7) 6.23(5) 1.22(1)
0.15 0.9331(7) 7.11(5) 1.39(2)
0.20 0.9045(8) 8.24(5) 1.61(2)
0.25 0.8731(6) 9.86(5) 1.93(2)
0.30 0.8375(6) 12.02(5) 2.35(2)

112.33 0.05 0.9723(8) 6.18(5) 1.21(1)
0.10 0.9425(8) 7.61(6) 1.49(2)
0.15 0.9101(8) 9.61(6) 1.88(2)
0.20 0.8730(8) 12.38(7) 2.42(2)
0.25 0.8304(8) 16.22(8) 3.18(3)
0.30 0.7834(4) 22.22(4) 4.35(3)

74.89 0.05 0.9724(9) 6.31(6) 1.24(2)
0.10 0.9445(9) 8.29(7) 1.62(2)
0.15 0.9136(9) 10.55(8) 2.07(2)
0.20 0.8821(9) 13.99(9) 2.74(3)
0.25 0.8470(9) 18.42(9) 3.61(3)
0.30 0.8066(9) 24.6(1) 4.81(4)

56.17 0.05 0.9762(8) 6.51(6) 1.28(2)
0.10 0.9523(9) 8.13(6) 1.59(2)
0.15 0.9280(9) 10.35(8) 2.03(2)
0.20 0.905(1) 13.2(1) 2.58(3)
0.25 0.882(1) 16.6(1) 3.24(4)
0.30 0.857(1) 20.7(1) 4.06(5)

44.93 0.05 0.980(1) 6.43(8) 1.26(1)
0.10 0.960(1) 8.02(9) 1.57(1)
0.15 0.942(1) 9.8(1) 1.92(1)
0.20 0.925(1) 12.1(1) 2.36(1)
0.25 0.910(1) 14.4(1) 2.81(1)
0.30 0.898(1) 16.6(1) 3.24(1)

F. Structural and thermodynamic properties of the colloidal particles

In this section we show some structural and thermodynamic results for the various colloidal systems considered in
the main manuscript. Specifically, in the right panel of Fig. S6 we report the colloidal radial distribution function
g(r)cc, obtained by MC simulations of the interacting chain model at fixed colloid volume fraction, φc = 0.3, and
various colloids’ size. The results for the different colloids’ size are perfectly superimposed witnessing how the system
size has been properly chosen so that the colloids retain their bulk behavior over a wide range of length scales. As a
term of comparison, we also displayed the results for g(r)cc for a pure colloidal system obtained from integral equations
using the accurate Verlet-Weis correction to the Percus-Yevick solution9. For colloidal systems in the presence of the
phantom chain we extrapolated the zero-momentum value of the colloid structure factor Scc(k) which is directly
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related to the isothermal compressibility of the system through the compressibility relation10

lim
k→0

Scc(k) = ρckBTχT , (5)

where ρc is the colloids number density, χT = 1/φc(∂φc/∂P )T and P is the (osmotic) pressure of the dispersion. The
k → 0 extrapolation was performed numerically assuming for Scc(k) the following expansion

Scc(k) = Scc(0) + a1k
2 + a2k

4 + o(k6), (6)

then considering the three smallest wave-vectors available for a finite box of volume V = M3, i.e. k1 = 2π/M ,
k2 = 2k1 and k3 = 3k1, and the approximant

Scc(0) =
3

2
Scc(k1)− 3

5
Scc(k2) +

1

10
Scc(k3) +O(M−6). (7)

Results are displayed in the left panel of Fig. S6 together with the accurate predictions obtained from the Carnahan-
Starling equation of state of the hard sphere model11.
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FIG. S6: On the left: Radial distribution function between the crowders at φc = 0.3 as obtained from the simulations of
the interacting chain model. Results for different colloidal size are reported together with the results from integral equations.
On the right: Zero-momentum extrapolated value of Scc(k), for colloids of various size and densities. We also reported the
predictions based on the compressibility equation using the Carnahan-Starling equation of state for the hard spheres.
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