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Appendix A.  Axisymmetric deformation in an everted tube  

 This section reviews the equilibrium solution of an everted elastomer tube with 

axisymmetric deformation. As illustrated in Fig. 2a, the inner radius and outer radius of 

an undeformed cylindrical tube are denoted by A and B, respectively. The thickness of 

the tube is denoted by H=B-A.  After the eversion, except for the regions close to the 

ends of the tube, most part of the tube remains cylindrical shape with inner radius a and 

outer radius b. A material particle with distance R from the center of an undeformed 

tube moves to the position with distance r from the center of the tube in the everted 

state.  The deformation geometry enables us to calculate the hoop stretch: λθ=r/R and 

radial stretch: λr=-dr/dR in the tube, respectively.  

 Following the literature1, tube eversion can be regarded as a general plane strain 

problem, with homogenous stretch λz=λ in the axial direction. After eversion, the inner 

surface of an undeformed tube becomes the outer surface of the tube in the everted state, 

and the outer surface of an undeformed tube becomes the inner surface of the tube in 

the everted state, namely, 

  ( ) , ( ) .r A b r B a   (A1) 

 The elastomer is taken to be incompressible, so that we have,  

  2 2 2 2( ),B R r a    (A2) 

and the deformation field can be further written as,  

     2 2 2/ .r R B R a    (A3) 

When the axial stretch λ and the inner radius a in the deformed state are known, the 

deformation field of the everted tube r(R) can be fully determined. 

 Based on (A3), we can calculate the hoop stretch and radial stretch: 
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      
2 2

/ 1 / /B R a R    , (A4)   

      
2 2

1/ / 1 /r B R a R     . (A5) 

 We assume that the elastomer can be described by Neo-Hookean model2. The 

Cauchy stress along the radial, the hoop and the axial directions of the tube can be 

written as  

  p
rr
 2 , (A6) 

  p 2

  , (A7) 

  p
zz
 2 , (A8) 

where μ is the small-deformation shear modulus of the elastomer and p is hydrostatic 

pressure. 

 Plugging (A6)–(A8) into the stress balance equation (2) in the main text and 

using the boundary condition 0r  at r=a, we can obtain,  

  
 2 2 2 2 2

2 2 2 2 2

( ) 1 1
( ) ln .

2

a r B a B aR
p r

r a r Br

     

  

    
    

 
 (A9) 

 The boundary condition 0
r

 at r=b gives that 

  
2 2

2 2 2

( ) 1 1 1
ln 0.

2

a B aA

a b Bb



 

  
   

 
 (A10) 

 Following Rivlin3, the relaxed boundary condition of zero resultant force at the 

end of the tube requires: 

   
2 2 2 2 2 2 2 2 2 2

2

2 2 3 2 2 2

( )( ) ( )
0

2 2( )

b b

a a

a r B a r B b r r b r
r dr dr

r r a r B

   


   

       
     

   
   (A11) 
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 Both axial stretch λ and the inner radius a of the inverted tube can be calculated 

numerically from equations (A10) and (A11). Therefore, with λ and a known, the 

deformation field r(R), the radial stretch λr and hoop stretch λθ can be calculated using 

(A3), (A4) and (A5). 

 In Fig. S1, the In Fig. S2a, we plot the field of radial stretch and hoop stretch in an 

everted tube for the thickness H=0.5B. In Fig. S2b, we plot the corresponding radial 

stress and hoop stress in the everted tube.  Both stretch and stress in the hoop direction 

are compressive in the inner surface after eversion, which may result in surface 

instability that is shown in Fig. 1b. 

 

Fig. S1 The inner radius a and the outer radius b of the tube are functions of the tube 

thickness H of the undeformed state. In the calculation, we ignore all possible 

mechanical instabilities. The comparisons between our analytical predictions and 

experimental measurements of the inner radius a (square dots) and outer radius b 

(circle dots) of everted tubes are shown.  
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Fig. S2 (a) Distribution of radial stretch and hoop stretch in an everted tube with the 

thickness H=0.5B. (b) Distribution of radial stress and hoop streess in the everted tube 

with the thickness H=0.5B.  
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Appendix B.  Linear stability analyses of an everted tube  

 The section summarizes the linear stability analysis of the everted tube. The 

stretch and stress field of an everted tube with axisymmetric deformation have been 

obtained in Appendix A. Each material point of a tube in the undeformed state is 

described by the reference coordinate X, which moves to current coordinate x after the 

eversion. The axisymmetric deformation filed of the elastomer is given by xo(X), with 

deformation gradient defined as, 

  
 

K

i
iK

X

x
F






X
0

0 . (B1)  

 To obtain the critical conditions of wrinkling of the elastomeric tube after 

eversion, we adopt linear perturbation analysis4, by perturbing the equilibrium solution 

0 ( )ix X with a state of infinitesimal displacement ( )u x . Using the Neo-Hookean material 

model2, we can obtain the corresponding perturbation of Cauchy stress as  

  ijjiippKjKij ppLLFF  ~~  , (B2) 

where ij~ and p~ are the perturbed true stress and hydrostatic pressure, 

and / .ij i jL u x   The incompressible condition can be expressed as 0.iiL   

 The perturbation of Cauchy stress also needs to satisfy force balance equation, 

namely,  

  0

~






j

ij

x


. (B3) 

 In general, the displacement perturbation ( )u x can be decomposed into the radial 

component  ,rur and the hoop component   ,ru . Before the perturbation, the 
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deformation field of the tube is axisymmetric and under the generalized plane strain 

condition. Consequently, the gradient of the displacement perturbation is given by,  

  
1 1

, , , .r r r
rr r r

u u uu u u
L L L L

r r r r r r

  
  

 

  
     
   

 (B4) 

The incompressible condition is,  

  
1

0.r r
uu u

r r r






  

 
 (B5) 

 The perturbed stress ij in (B2) takes the form,   

  

 
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2
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 (B6) 

 The perturbed stress balance equation (B3) can be expressed in the polar 

coordinate as,  

  

1
0,

1
0.

r rrrr

r r r

r r r

r r r

 
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   
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 

 (B7) 

 The boundary condition for the perturbed stress can be expressed by,  

  0, 0.rr r    (B8) 

 By setting the perturbed displacement field as  

  

( , ) ( )cos( ),

( , ) ( )sin( ),

( , ) ( )cos( ),

ru r f r m

u r g r m

p r k r m



 

 

 







 (B9) 

where f(r), g(r) and k(r) are real function and m is the wave number. Substituting (B9) 

into (B4)-(B7), we obtain that, 
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    
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    
     

 

      
     

 

  
   0,f

 
 

 

 (B10) 

where r=r(R) and p=p(R) can be obtained from (A3) and (A9) in Appendix A. 

Substituting (B9) into the boundary condition (B8) yields, 

      
 2 2 22 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 3

1 ( 2 )2( ) 2 ( 2 )
0,

m R rR R r r R R r
f f f f

m m R r m r m r

 

    

   
        

 
 (B11) 

  2 2( 1) 0,r f rf m f      (B12) 

for both r=a and b. 

 The differential equation (B10) accompanied with the boundary (B11) and (B12) 

consist an eigenvalue problem for the loading parameter H. The result can be resolved 

numerically by compound matrix method5.  

 In Fig. S3, we plot the critical thickness H for wrinkling instability with respect to 

wave number m. The smallest tube thickness for the onset of wrinkling instability in the 

everted tube is defined as critical thickness, which is Hcirt=0.58B. 
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Fig. S3 Critical tube thickness for the wrinkling instability with respect to the 

wavenumber m. The red dot represents the critical thickness for the wrinkling instability 

in the an everted tube, which is Hcirt=0.58B. 
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Appendix C. Finite element simulation of crease formation in an everted tube 

 Creases are localized folds with a singular region of self-contact, around which 

the strain field is concentrated6, 7. Consequently, the critical condition for the onset of 

creases and the subsequent growth of creases cannot be predicted by linear stability 

analyses. Following our previous studies8, in this letter, we conduct finite element 

simulation using commercial software ABAQUS to predict the critical condition of 

crease initiation and study the growth of creases in an everted cylindrical tube. 

 To avoid simulating the complex finite deformation of tube eversion process, the 

equilibrium stress state after eversion is introduced as initial stress through the user 

subroutine SIGINI in ABAQUS9. The stress field is obtained from the equilibrium 

analysis in Appendix A and the subroutine is called at the start of the crease analysis.  

 We assume that the multiple creases periodically distribute in the inner surface of 

an everted tube. Therefore, only half crease with symmetric boundary condition is 

adopted in the simulation as shown in the inset of Fig. 3, with θ being the sector angle. 

The number of creases is determined by π/θ. To calculate the strain energy of the 

everted tube with creases, we apply a radial displacement d at a point in the inner 

surface of the everted tube to induce the formation of a crease. The inner and outer 

surfaces of the tube are set to be traction free.  

 In the finite element simulation, the plane strain hybrid element CPE6MH is 

adopted. To resolve stress/strain field around the crease tip, the mesh size in our 

simulation is set to be much smaller than the crease depth d. In addition, mesh-to-mesh 

solution mapping9 is adopted in our simulation when the elements deform significantly 

from their original configurations and become severely distorted during the crease 

formation. The old, deformed mesh is replaced by a new mesh of better quality. The 
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solutions are mapped from the old mesh to the new mesh so that the analysis can 

continue.  
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