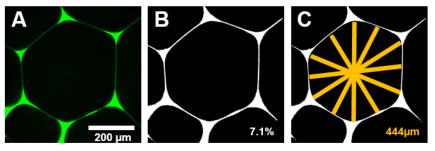
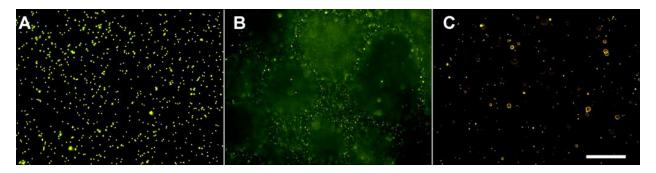
Supporting Information


Evolution of hierarchical porous structures in supramolecular guest-host hydrogels

Christopher B. Rodell¹, Christopher B. Highley¹, Neville N. Dusaj¹, Minna H. Chen¹, Chao Wang², Lin Han², Jason A. Burdick*


¹Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.

² School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA.

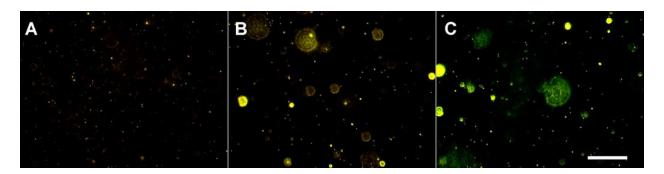

^{*}Corresponding author. Telephone: 215-898-8537; E-mail: burdick2@seas.upenn.edu

Figure S1. Methodology for determining pore void fraction and diameter. Fluorescent images were thresholded (**A**) and converted to binary for quantification of polymer void fraction (**B**). From these same images, the diameter of pores was determined by averaging multiple transverse segments (orange, **C**).

Movie S1. Microbead motion when fixed to a surface (non-diffusive control, $\bf A$), embedded within the hydrogel ($\bf B$), and within PBS (diffusive control, $\bf C$). Scale bar: 50 μ m. Video acquired at 62.5 fps, 30 sec, 4.25x playback.

Movie S2. Microbead motion within control dilutions of hyaluronic acid, including 2.5 wt% (**A**), 5.0 wt% (**B**), and 10 wt% (**C**), indicating high sensitivity of the methodology toward viscosity changes. Scale bar: 50 µm. Video acquired at 62.5 fps, 30 sec, 4.25x playback.