Electronic Supporting Information

Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites

Dan Zhao^a, Matteo Di Nicola^b, Mohammad M. Khani^c, Jacques Jestin^{a,d}, Brian C. Benicewicz^c, and Sanat K. Kumar^{*a}

^aDepartment of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States

^bSchool of Science and Technology, Università di Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy

^cDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

dLaboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

Figure S1. The apparent hydrodynamic diameter ($D_{\rm H}$) of silica/PS-b-P2VP (110-b-12.5) dispersions as a function of PS-b-P2VP concentration ($C_{\rm PS-b-P2VP}$). The dashed red line is a guide for the eye. Note that the saturation adsorption yields a grafting density of ~0.01 chains/nm².

Figure S2. TEM micrographs for (a), (b) bare silica NPs in a 592 kg mol⁻¹ PS matrix; (c), (d) silica NPs fully adsorbed with 110-b-12.5 BCPs in a 106 kg mol⁻¹ matrix; (e), (f) silica NPs fully adsorbed with 110-b-12.5 BCPs in a 592 kg mol⁻¹ PS matrix. The images on the left column were photographed at a low magnification (40k) while the ones on the right column were obtained at a high magnification (110k).

Figure S3. Van der Waals attraction potential $(V/k_{\rm B}T)$ as a function of the inter-particle separation (*h*) for bare (black), BCP-0.01-148.5 (red) and BM-0.02-104 (blue) silica NPs. Note that, for these calculations, we assume the P2VP chains are fully collapsed onto the silica surface.

Figure S4. Pixel-pixel autocorrelation function C(r) as a function of distance for TEM images of BCP (148.5-b-19) coated silica NPs in PS matrices with varying molecular weights, as indicated inside the graph.

Figure S5. Time-temperature superposition shift factor as a function of temperature for neat 106 kg mol⁻¹ PS melts as well as those filled with 5 wt % bimodal grafted or BCP adsorbed silica NPs. The reference temperature is 200 °C.

Figure S6. The storage (*G*['], closed symbols) and loss (*G*^{''}, open symbols) modulus as a function of angular frequency for (a) 106 kg mol⁻¹ and (b) 592 kg mol⁻¹ PS melts as well as their corresponding nanocomposites, as indicated inside the graphs. The reference temperature for (a) is 200 °C with the shift factors a_T shown in Figure S5. All the datapoints in (b) were collected at 200 °C. Also note that the nanocomposites have a silica core loading of 5 wt % and had been annealed for 5 days at 150 °C under vacuum before rheological tests.

Figure S7. Strain sweep results for (a1-a3) 106 kg mol⁻¹ PS melts as well as those filled with 5 wt % (b1-b3) bimodal BM-0.02-104, and (c1-c3) BCP-0.01-148.5 silica NPs. All the measurements were conducted at an angular frequency of 100 rad s⁻¹. The temperature used for each experiment is indicated inside the figure.

Figure S8. Strain sweep results for (a) 592 kg mol⁻¹ PS melts as well as those filled with 5 wt % (b) bimodal BM-0.02-104, and (c) BCP-0.01-148.5 silica NPs. All the measurements were conducted at an angular frequency of 100 rad s⁻¹ at 200 °C.