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1 List of symbols

Time t

Radius of the aggregate Ry | 1——-3.5mm
Length of the cylinder Ly 7 mm
Radius of the cylinder Ry | 1.5 mm
Radius of the dry core R

Length of the dry droplet in cylinder geometry | ¢

Volume fraction ) 63 %
Porosity € 0.36
Permeability K 73 nm?
Refractive index of the solvent n 1.48
Viscosity of the solvent n 0.1 Pa.s
Atmospheric pressure P, | 10° Pa
Capillary pressure P, | 45-10° Pa
Initial pressure in the aggregate P;, | 10 mbar - 1 bar
Nondimensional radius R R%
Nondimensional time t '4’(1;‘6’7;;“)
Nondimensional pressure 11 Pﬁﬁ

2 Kinetics of imbibition : theoretical descrip-
tion

2.1 Imbibition of a sphere

The air pressure inside the aggregate increases according to the Boyle-Mariotte
law :
P)MLRS = ]DinRB (1)

where P;, is the initial air pressure, Ry the radius of the aggregate and R the
radius at time ¢. By equating the charge loss with the difference of pressure, we
get :



Figure 1: Imbibition of a sphere. The wetting fluid (blue) imbibes a sphere of
porous material. The air (white) in entrapped at the center of the sphere.
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where 77 is the viscosity of the solvent, € the porosity of the medium and « its
permeability. It can be normalized as :
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using the dimensionless quantities :
~ R ~ Ii(Po + Pc)
R=— t= ———75—1 4
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A stationary state at long time is obtained :
Rplateau = Hl/g (5)
where II is defined as Pfﬁ,c. The solution is given by :
- 1 R R 1 ?3R? + Y/3R + 1
t=>— " +—+_11*"log + +
6 2 3 6 I12/3 4+ /3 41

1/3 1/3
- %Hg/?’ (arctan (21’[\/];4—1) — arctan (21’[\/;—1)) (6)

193 Mm/3R -1 1 MR? — 1
3H log< o3 1 +3H10g o1
This equation has been used to model the evolution of the imbibed radius as a

function of time (Fig. 1 of the MS).
The front acceleration is then obtained by derivation of Eq. 4 :
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and is plotted in Fig. 2 of the Letter. The first two terms of the product are
negative. The sign of the acceleration is thus governed by the last term, and a
straightforward analysis shows that the acceleration is positive for a range of R
when :

I <4/625=64-10"" (8)



2.2 Imbibition kinetics of an infinite cylinder aggregate

Figure 2: Imbibition of an infinite cylinder. The wetting fluid (blue) imbibes a
cylinder of porous material. The air (white) in entrapped at the center of the

cylinder.

Let us now consider an infinite cylinder geometry.
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or, with the dimensionless quantities defined in Eq. 4 :
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The acceleration of the front is then given by :
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The front accelerates over a range of R values when :
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3 Planar geometry
The pressure balance now becomes :
ne dH Hy
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Defining H = Hﬁo it may be written in dimensionless units :
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Figure 3: Imbibition of a planar geometry. The wetting fluid (blue) imbibes a
plane of porous material. The air (white) in entrapped above the fluid.

and the second derivative writes :
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a2z (1— H)3 (15)
The sign of ‘ﬁg remains constant for H € [0, 1] and the front never acceler-
ates.



