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1 List of symbols

Time t
Radius of the aggregate R0 1−−3.5 mm
Length of the cylinder `0 7 mm
Radius of the cylinder R0 1.5 mm
Radius of the dry core R
Length of the dry droplet in cylinder geometry `
Volume fraction φ 63 %
Porosity ε 0.36
Permeability κ 73 nm2

Refractive index of the solvent n 1.48
Viscosity of the solvent η 0.1 Pa.s
Atmospheric pressure P0 105 Pa
Capillary pressure Pc 4.5 · 105 Pa
Initial pressure in the aggregate Pin 10 mbar - 1 bar

Nondimensional radius R̃ R
R0

Nondimensional time t̃ κ(P0+Pc)
ηεR2

0
t

Nondimensional pressure Π Pin

P0+Pc

2 Kinetics of imbibition : theoretical descrip-
tion

2.1 Imbibition of a sphere

The air pressure inside the aggregate increases according to the Boyle-Mariotte
law :

PinR
3
0 = PinR

3 (1)

where Pin is the initial air pressure, R0 the radius of the aggregate and R the
radius at time t. By equating the charge loss with the difference of pressure, we
get :
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Figure 1: Imbibition of a sphere. The wetting fluid (blue) imbibes a sphere of
porous material. The air (white) in entrapped at the center of the sphere.

P0 +
ηεR2

0

κ

d R
R0
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(
R

R0
− R2

R2
0

)
+ Pc = Pin

R3
0

R3
(2)

where η is the viscosity of the solvent, ε the porosity of the medium and κ its
permeability. It can be normalized as :

dR̃

dt̃
(R̃− R̃2) + 1 =

Pin
P0 + Pc

1

R̃3
(3)

using the dimensionless quantities :

R̃ =
R

R0
t̃ =

κ(P0 + Pc)

ηεR2
0

t (4)

A stationary state at long time is obtained :

R̃plateau = Π1/3 (5)

where Π is defined as Pin

P0+Pc
. The solution is given by :

t̃ =
1

6
− R̃2

2
+
R̃3

3
+

1

6
Π2/3 log

(
Π2/3R̃2 + Π1/3R̃+ 1

Π2/3 + Π1/3 + 1

)

− 1√
3

Π2/3

(
arctan

(
2Π1/3R̃+ 1√

3

)
− arctan

(
2Π1/3 + 1√

3

))

− 1

3
Π2/3 log

(
Π1/3R̃− 1

Π1/3 − 1

)
+

1

3
Π log

(
ΠR̃3 − 1

Π− 1

) (6)

This equation has been used to model the evolution of the imbibed radius as a
function of time (Fig. 1 of the MS).
The front acceleration is then obtained by derivation of Eq. 4 :
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d2R̃

dt̃2
=

1

(R̃2 − R̃)3

(
1− Π

R̃3

)(
−4Π

R̃3
+

5Π

R̃2
+ 1− 2R̃

)
(7)

and is plotted in Fig. 2 of the Letter. The first two terms of the product are
negative. The sign of the acceleration is thus governed by the last term, and a
straightforward analysis shows that the acceleration is positive for a range of R̃
when :

Π < 4/625 = 6.4 · 10−3 (8)

3



2.2 Imbibition kinetics of an infinite cylinder aggregate

H0

H R
R0

Figure 2: Imbibition of an infinite cylinder. The wetting fluid (blue) imbibes a
cylinder of porous material. The air (white) in entrapped at the center of the
cylinder.

Let us now consider an infinite cylinder geometry.

P0 +
ηε

κ

dR

dt
R log

(
R

R0

)
+ Pc = Pin

R2
0

R2
(9)

or, with the dimensionless quantities defined in Eq. 4 :

dR̃

dt̃
R̃ log R̃+ 1 =

Π

R̃2
(10)

The acceleration of the front is then given by :

d2R̃

dt̃2
=

(
ΠR̃−2 − 1

)(
3ΠR̃−2 log(R̃) + ΠR̃−2 − 1− log(R̃)

)
(R̃ log(R̃))3

(11)

The front accelerates over a range of R̃ values when :

Π <
e−8/3

9
= 5.5 · 10−3 (12)

3 Planar geometry

The pressure balance now becomes :

P0 +
ηε

κ

dH

dt
(H0 −H) + Pc = Pin

H0

H
(13)

Defining H̃ = H
H0

it may be written in dimensionless units :

dH̃

dt̃
(1− H̃) + 1 =

Π

H̃
(14)
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Figure 3: Imbibition of a planar geometry. The wetting fluid (blue) imbibes a
plane of porous material. The air (white) in entrapped above the fluid.

and the second derivative writes :

d2H̃

dt̃2
=

(
ΠR̃−1 − 1

)(
−ΠH̃−2 + 2ΠH̃−1 − 1

)
(1− H̃)3

(15)

The sign of d2H̃
dt̃2

remains constant for H̃ ∈ [0, 1] and the front never acceler-
ates.
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