ELECTRONIC SUPPLEMENTARY INFORMATION for:

Nanoparticle diffusion in crowded and confined environments

Firoozeh Babayekhorasani^{||}, David E. Dunstan[†], Ramanan Krishnamoorti^{||,‡,*}, and Jacinta C. Conrad^{||,*}

^IChemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 USA [†]Chemical and Biomolecular Engineering, University of Melbourne, 3010 Australia

^cDepartment of Chemistry, University of Houston, Houston, Texas 77204 USA

*Corresponding authors. E-mail: <u>ramanan@uh.edu</u>, jcconrad@uh.edu

Figure S1. Mean-squared displacement of 400 nm polystyrene nanoparticles as a function of lag time in water. Symbols represent different media: free diffusion in solution (purple circle), confined diffusion in porous media with bead diameter of 30 μ m (blue square), 10 μ m (red triangle), or 5 μ m (yellow diamond).

Table S1. Models describing the relative confined diffusivity in cylindrical and slit pores as a function of the dimensionless confinement length ξ .

Pore type	Model	Category	Validity
Cylindrical	$D/D_0 = (1 - \xi)^2 (1 - 2.104\xi + 2.09\xi^3 - 0.95\xi^5)^{1,2}$	Centerline approximation	$\xi < 0.4$
Cylindrical	$D/D_0 = 1 + \frac{9}{8}\xi \ln \xi - 1.539\xi + 1.2\xi^2 + O(\xi^2)^{3,4}$	Cross-section averaging	$\xi \to 0$
Cylindrical	$D/D_0 = 1 + \frac{9}{8}\xi \ln \xi - 1.539\xi + 0.528155\xi^2 + 1.915213\xi^3 - 2.81903\xi^4 + 0.270788\xi^5 + 1.10115\xi^6 + 0.435933\xi^{75,6}$	Cross-section averaging	$\begin{array}{l} 0 \leq \xi \\ \leq 0.95 \end{array}$
Slit	$D/D_0 = (1 - \xi)(1 - 1.004\xi + 0.418\xi^3 + 0.21\xi^4 - 0.169\xi^5 + O(\xi^6)^7$	Centerline approximation	$\xi < 0.5$
Slit	$D/D_0 = 1 + \frac{9}{16} \xi \ln \xi - 1.9358\xi + 0.4285\xi^3 - 0.3192\xi^4 + 0.08428\xi^{5^8}$	Cross-section averaging	$\xi < 0.33$

Figure S2. Probability density function of particle displacements at lag times of (a) 0.25 sec and (b) 1 sec for nanoparticles in water. Symbols represent different media: free diffusion in solution (purple circle) and confined diffusion in porous media with bead diameter of 5 μ m (yellow diamond). The dashed line indicates a fit to the sum of a Gaussian and a stretched Gaussian.

Figure S3. Decay length as a function of lag time for 400 nm nanoparticles in water. Symbols represent different media: free diffusion in solution (purple circle); confined diffusion in porous media with bead diameter of 30 μ m (blue square), 10 μ m (red triangle), or 5 μ m (yellow diamond).

Calculation of interactions between nanoparticles and glass beads.

We treat the total interactions between nanoparticles and glass beads as the sum of an electrostatic interaction ΔG^{EL} , a Lifshitz-van der Waals interaction ΔG^{LW} , and a polymer mediated deletion interaction ΔG^{DEP} :

$$\Delta G^{total} = \Delta G^{EL} + \Delta G^{LW} + \Delta G^{DEP}.$$

The contribution of electrostatic and Lifshitz-van der Waals interactions is calculated using DLVO theory:^{9, 10}

$$\Delta G^{EL}(h) = \pi \varepsilon \varepsilon_0 R \left[2\varphi_{NP} \varphi_{GB} \ln \left(\frac{1 + \exp(-\kappa h)}{1 - \exp(-\kappa h)} \right) + (\varphi_{NP}^2 + \varphi_{GB}^2) \ln(1 - \exp(-2\kappa h)) \right]$$
S2

and

$$\Delta G^{LW}(h) = 2\pi R h_0 \Delta G_{d_0}^{LW} \frac{h_0}{h},$$
 S3

where ε_0 is permittivity of the free space $(8.85 \times 10^{-12} \text{ s}^4 \text{ A}^2 \text{ m}^{-3} \text{ kg}^{-1})$, $\varepsilon = 78$ is the relative permittivity of water, *R* is the particle radius, *h* is the distance between the particle and the wall, and h_0 is the minimum equilibrium distance. φ_{NP} and φ_{GB} are the surface potential of the nanoparticles and the glass beads, respectively, and are related to the corresponding zeta potentials. κ is the inverse of Debye length $\kappa = (4\pi l_B \sum_i c_i z_i^2)^{1/2}$, where $l_B = 0.7$ nm is the Bjerrum length in water, *c* is the ion concentration of polyelectrolytes, and *z* is the ionic charge.¹¹ $\Delta G_{d_0}^{LW}$ is calculated as:

$$\Delta G_{d_0}^{LW} = -2\left(\sqrt{\gamma_{NP}^{LW}} - \sqrt{\gamma_m^{LW}}\right)\left(\sqrt{\gamma_{GB}^{LW}} - \sqrt{\gamma_m^{LW}}\right),$$
 S4

where γ_{NP}^{LW} , γ_m^{LW} , and γ_{GB}^{LW} are the surface energy of the nanoparticles, water, and glass beads, respectively.

When the distance between a particles and a nearby confining surface (i.e. a glass bead) is less than the effective diameter of the polymer chains, the region between the particles and the surface is inaccessible to the centers of mass of the polymer chains and hence is depleted of polymer molecules. Depletion of polymer molecules inside this area creates an effective osmotic pressure, leading to a depletion attraction between particles and walls.¹² We follow the procedure for calculating the depletion interaction in the excluded volume regime established by ref¹³. Briefly, the potential interaction ΔG^{DEP} between a particle and a wall is calculated as

$$\Delta G^{DEP}(h) = -\int_0^{n_p} dn'_p \frac{1}{n'_p} \left(\frac{\partial \Pi}{\partial n'_p}\right) [\Gamma(h) - \Gamma(\infty)].$$
 S5

where n_p is the polymer bulk concentration. From renormalization group theory, the osmotic compressibility Π can be written as

$$\frac{\partial(\beta\Pi)}{\partial n_p} = 1 + 2.63 \,\phi_p \left(\frac{1 + 3.25 \,\phi_p + 4.15 \,\phi_p^2}{1 + 1.48 \,\phi_p}\right)^{0.309}$$
S6

where ϕ_p is the relative bulk polymer concentration and $\beta = 1/k_B T$. The overlap volume of the depletion layers in a semidilute solution is given by:^{13, 14}

$$\frac{\Gamma(h) - \Gamma(\infty)}{n_p} =$$

$$\begin{cases} \frac{4}{3}\pi(R+\Delta_{s})^{3} & h < \Delta_{w} - 2R - \Delta_{s} \\ \frac{1}{3}\pi(\Delta_{s} + \Delta_{w} - h)^{2}(3R + 2\Delta_{s} - \Delta_{w} + h) & \Delta_{w} - 2R - \Delta_{s} < h < \Delta_{w} + \Delta_{s}, \\ 0 & h < \Delta_{w} + \Delta_{s}, \end{cases}$$
S7

where Δ_s is the depletion layer thickness around the sphere and Δ_w is the depletion layer thickness near the wall. In the semidilute regime the depletion layer thickness depends on the polymer correlation length, which is in turn a function of the polymer concentration. The normalized depletion thickness around a sphere in semidilute solution is $\frac{\Delta_s}{R} = \left[1 + 3.213\frac{\xi}{R} + 1.213\frac{\xi}{R}\right]$

$$2.607 \left(\frac{\xi}{R}\right)^2 - 0.120 \left(\frac{\xi}{R}\right)^3 \Big]^{1/3} - 1$$
 [refs^{13, 15}], where ξ is the polymer correlation length. The

depletion thickness near the wall in a semidilute solution is $\Delta_w = 1.071\xi$ [ref¹³].

Following ref ¹³, we apply the renormalization group theory approach of ref ¹⁶ to calculate the change in ξ as a function of n_p and use it to evaluate eqs S6 and S7. These expressions are then integrated to obtain the depletion interaction potential via eq S5, which accounts for the concentration dependence of the correlation length in the osmotic compressibility (eq S6), the overlap volume (eq S7), and the depletion thicknesses near a sphere and near a wall.

The electrostatic, Lifshitz-van der Waals, depletion, and total interactions between a nanoparticle and a glass bead are shown in Figure S6. Electrostatic repulsion prevents permanent

adsorption of nanoparticles onto the surface of glass beads, whereas weak depletion interactions ($\sim 5kT$) mediate particle-surface attractions at larger distances.

Figure S4. Electrostatic (blue circle), Lifshitz-van der Waals (red square), depletion (gold triangle), and total (purple line) interactions between a nanoparticle and a glass bead. The depletion interactions are calculated according to the renormalization group theory model following ref¹³.

Table S2. Fitting parameters of a stretched exponential model ($G(\tau) = a \exp(-bx^c)$) for distributions of immobile time for nanoparticle diffusion in HPAM within porous media. Error is calculated from the confidence interval of the fitting parameters.

Fitting parameters	Media					
	5 μm	10 µm	30 µm	Free		
а	5.5 ± 0.1	7.2 ± 0.2	7.1 ± 0.4	4.6 ± 0.7		
b	2.53 ± 0.02	2.81 ± 0.03	2.80 ± 0.06	2.35 ± 0.02		
С	0.63 ± 0.01	0.63 ± 0.01	0.66 ± 0.01	0.91 ± 0.01		

Figure S5. Complex viscosity η^* as a function of angular frequency ω of hydrolyzed polyacrylamide solution at concentration of 0.1 w/w%. The dashed line indicates a fit to a power law function $\eta^* = k\omega^{n-1}$.

Table S3. Glass bead properties and sintering protocol for borosilicate and soda lime glass beads.

Material	Annealing point (°C)	Softening point (°C)	Sintering temperature (°C)	Sintering period (min)
Borosilicate	560	821	810	5
Soda Lime	514	726	680	15

Figure S6. Characterization of the porous media. (a–c) Confocal images of porous media with bead diameters of (a) 5.4 μ m, (b) 10 μ m, and (c) 30 μ m. (d–f) Probability distributions of the chord length and the minimum chord length for porous media with bead diameters of (d) 5.4 μ m, (e) 10 μ m, and (f) 30 μ m. Dashed lines represent fits to a Gamma distribution function (equation 2 in the main text).

			0	· · · · · · · · · · · · · · · · · · ·			_
	HPAM		Glycerol	/water	Water		
Frame rate (fps)	10	2	10	2	40	10	
d _b =5 μm	111	113	44	81	2063	4628	
d _b =10 μm	335	314	205	399	1260	2220	
d _b =30 μm	67	113	499	427	1316	2377	
Free diffusion	1088	765	1066	1144	1205	2741	

Table S4. Total number of trajectories of each bed configuration, fluid, and frame rate.

Table S5. Total number of points at the shortest and longest time for each frame rate, bed configuration, and fluid.

HPAM				
	10 fps		2 fps	
	short time long time		short time	long time
d _b =5 μm	159430	145468	152947	137919
d _b =10 μm	251967	232652	210154	187401
d _b =30 μm	61407	56879	50786	43213
Free diffusion	274046	250837	248081	211159
Glycerol/water				
	10 fps		2 fps	
	short time long time		short time	long time

d _b =5 μm	10874	4596	7460	4706	
d _b =10 μm	59238	46074	34707	18184	
d _b =30 μm	87040	71113	31517	15715	
Free diffusion	224728	188185	150809	104480	
Water					
	10 fps		40 fps		
	short time long time		short time	long time	
d _b =5 μm	106374	18734	96209	39242	
d _b =10 μm	96644	20435	102508 49892		
d _b =30 μm	62936	6203	62440 24936		
Free diffusion	115968	23280	96443	50305	

1. Pappenheimer, J. R.; Renkin, E. M.; Borrero, L. M. Filtration, Diffusion and Molecular Sieving through Peripheral Capillary Membranes. *American Journal of Physiology* **1951**, *167* (1), 13-46.

2. Renkin, E. M. Filtration, Diffusion, and Molecular Sieving through Porous Cellulose Membrane. *Journal of General Physiology* **1954**, *38* (2), 225-243.

3. Brenner, H.; Gaydos, L. J. The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. *Journal of Colloid and Interface Science* **1977**, *58* (2), 312-356.

4. Nitsche, J. M.; Balgi, G. Hindered Brownian Diffusion of Spherical Solutes within Circular Cylindrical Pores. *Industrial & Engineering Chemistry Research* **1994**, *33* (1988), 2242-2247.

5. Mavrovouniotis, G. M.; Brenner, H. Hindered sedimentation, diffusion, and dispersion coefficients for brownian spheres in circular cylindrical pores. *Journal of Colloid and Interface Science* **1988**, *124* (1), 269-283.

6. Higdon, J. J. L.; Muldowney, G. P. Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. *Journal of Fluid Mechanics* **1995**, *298*, 193-210.

7. Happel, J.; Brenner, H. *Low Reynolds number hydrodynamics: with special applications to particulate media*; Springer Science & Business Media2012.

8. Pawar, Y.; Anderson, J. L. Hindered diffusion in slit pores: an analytical result. *Industrial & Engineering Chemistry Research* **1993**, *32* (4), 743-746.

9. Van Oss, C. J.; Good, R. J.; Chaudhury, M. K. The role of van der Waals forces and hydrogen bonds in "hydrophobic interactions" between biopolymers and low energy surfaces. *Journal of Colloid and Interface Science* **1986**, *111* (2), 378-390.

10. Wang, H.; Sodagari, M.; Chen, Y.; He, X.; Newby, B.-m. Z.; Ju, L.-K. Initial bacterial attachment in slow flowing systems: Effects of cell and substrate surface properties. *Colloids and Surfaces B: Biointerfaces* **2011**, *87* (2), 415-422.

11. Dobrynin, A. V.; Colby, R. H.; Rubinstein, M. Scaling Theory of Polyelectrolyte Solutions. *Macromolecules* **1995**, *28* (6), 1859-1871.

12. Rudhardt, D.; Bechinger, C.; Leiderer, P. Direct Measurement of Depletion Potentials in Mixtures of Colloids and Nonionic Polymers. *Physical Review Letters* **1998**, *81*, 1330-1333.

13. Tuinier, R.; Aarts, D. G. A. L.; Wensink, H. H.; Lekkerkerker, H. N. W. Pair interaction and phase separation in mixtures of colloids and excluded volume polymers. *Physical Chemistry Chemical Physics* **2003**, *5* (17), 3707-3715.

14. Kleshchanok, D.; Tuinier, R.; Lang, P. R. Direct measurements of polymer-induced forces. *Journal of Physics: Condensed Matter* **2008**, *20*, 073101.

15. Tuinier, R.; Lekkerkerker, H. N.; Aarts, D. G. Interaction potential between two spheres mediated by excluded volume polymers. *Physical Review E* **2002**, *65* (6), 060801(R).

16. Schäfer, L. Excluded Volume Effects in Polymer Solutions; Springer Verlag: Berlin, 1999.