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1 The interfacial boundary condition for dissolution
For simulating drop dissolution, it is necessary to establish the appropriate boundary condition for dissolution to be imposed at
the drop-suspending fluid interface, and determine the ranges of the constants involved in such a condition. As has been the
case throughout this paper, all dimensional variables are succeeded by a prime symbol; dimensionless variables do not carry this
symbol.

Consider the interface between the drop and the suspending fluid shown in Figure 1. The vector n is the normal to the
interface. The interfacial velocity field is denoted as V ′I . The velocity fields in the drop and suspending fluid phases are u′

and v′ (m/s), respectively, their densities are ρ′u and ρ′v (kg/m3), respectively, and the concentrations of the solute species being
exchanged between the drop and the suspending fluid are C ′u and C ′v (mol/m3), respectively. The drop phase is a pure species,
e.g. pure CO2 or pure SO2.

An overall mass balance at the drop interface D yields1

[ρ′u(u′ − V ′I) · n]|D = [ρ′v(v
′ − V ′I) · n]|D = 0. (1.1)

From a species mass balance, assuming the drop phase a single-component pure species, one gets

[C ′u(u′ − VI) · n]|D = [C ′v(v
′ − V ′I) · n]|D + k′m(C ′v|D − C

′
∞). (1.2)

Here, k′m is the mass transfer coefficient (m/s)1 corresponding to the transport of the dissolved species from the interface into the
bulk suspending fluid.

The above two equations can be solved for the individual velocities of drop phase and outer phase relative to the interfacial
normal velocity V ′I .

(u′|D − V
′
I) · n =

k′m (C ′v − C ′∞)(
C ′u

ρ′v
ρ′u
− C ′v

) ρ′v
ρ′u

∣∣∣∣∣∣
D

. (1.3a)

(v′|D − V
′
I) · n =

k′m (C ′v − C ′∞)(
C ′u

ρv
ρu
− C ′v

)
∣∣∣∣∣∣
D

. (1.3b)

The discontinuity in the velocity at the interface is, therefore,

[(v′ − u′) · n]|D = −k′. (1.4)

where

k′ = k′m

 C ′v − C ′∞
C ′u

ρ′v
ρ′u
− C ′v

(
ρ′v
ρ′u
− 1

)∣∣∣∣∣∣
D

(1.5)

Eq. 1.4 is boundary condition that has been employed at the interface to simulate dissolution. The constant k′ is termed as the
dissolution constant, and has units of m/s. In this work, we will use a dimensionless form of the dissolution constant, k, which
is defined as

k =
µ′k′

γ′
. (1.6)
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Here, µ′ is the viscosity of the suspending medium, and γ′ is the interfacial tension between the drop and suspending fluid.
Let us now estimate the practical range of values of the dissolution constant. For a pure gas dissolving in a liquid, Henry’s

law allows us to write

C ′v|D = H′P ′. (1.7)

where H is the Henry’s law constant in moles of the gas dissolved per m3 of solution per Pa of pressure. The concentration in
the gas phase, C ′u, may be written using the ideal gas law as

C ′u =
P ′

R′T ′
. (1.8)

The ratio of these two concentrations is

C ′v|D
C ′u

= H′R′T ′. (1.9)

For gases such as carbon dioxide, hydrogen sulphide, sulphur dioxide, and ammonia that are known to be reasonably soluble in
water at room temperature (25◦C), the Henry’s law constants range from 10−4 to 10−1 mol/(m3-Pa)2 . At 25◦C, H′R′T ′ will
range between about 1 to 1000, suggesting that either C ′v|D and C ′u are of comparable magnitude, or C ′v >> C ′u at the interface.
In either case, Eq. 1.5 can be simplified using this result and the fact ρ′v << ρ′u for a gas-liquid system, to

k′ ≈ k′mH′R′T ′. (1.10)

Note that the bulk concentration of the gas in the aqueous solution, C ′∞, has been taken to be zero.
The mass transfer coefficient is given by k′m = D′/δ′, where D′ = 1.9 × 10−9 m2/s is the diffusivity of carbon dioxide in

water at 25◦C, and δ′ is the film thickness for mass transfer3. Since dissolution experiments are typically carried out in laminar
flows in microchannels, the length scale for concentration gradients in the aqueous phase can range between the scale of the
microchannel (∼ 100 µm) to a few microns. The diffusivity of small dissolved gas molecules in water is of the order of 10−9

m2/s; the mass transfer coefficient, therefore, can vary between 10−5 m/s to 10−3 m/s. For the ranges of the mass transfer
coefficient and the Henry’s law constant noted here, Eq. 1.10 suggests that the dissolution constant, k′ can vary between 1 µm/s
to 10 cm/s.

For typical gas-water interfacial tensions on the order of 10 mN/m, and a medium viscosity of 1 mPa-s, the dimensionless
dissolution constant ranges between 10−7 to 0.01. For our simulations, we have selected two values from the upper end of this
interval representative of strongly dissolving systems, namely k = 0.001 and k = 0.01. Note that if the interfacial tensions are
lowered due to the presence of interfacial species, then k can be larger than 0.01.

Before concluding this section, we make the following note. Dividing Eq. 1.3b by Eq. 1.3a, we get[
(v′ − V ′I) · n
(u′ − V ′I) · n

]∣∣∣∣
D

=
ρ′u
ρ′v
. (1.11)

Since ρ′v >> ρ′u for gases dissolving in liquids, the above equation indicates that the normal component of the interfacial
velocity is closer to the suspending phase velocity than the drop phase velocity. The interface can therefore be advanced in time
by employing only the external fluid velocity extracted from the solution of the fluid mechanical model, which is detailed in the
next section.

2 Boundary Integral Solutions
The boundary integral formulation used in this work requires expressions to calculate the stress in the outer flow at the tube
surface S, as well as an expression for the velocity of the fluid at the drop interfaces Dl to advance the shapes of the drops with
time. The derivation of the boundary integral equations can be found in numerous texts4–6. These expressions are defined in
terms of the free-space Green’s function G and its corresponding stress tensor T for a point force in a Stokes flow:

G =
I

|x− x0|
+

(x− x0) (x− x0)

|x− x0|3
, T = −6

(x− x0) (x− x0) (x− x0)

|x− x0|5
(2.1)
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where x̂ = (x− x0), the distance between the point force location x0 and the observation point x. The boundary integral
equation for the outer flow v in the presence of the wall and drop surfaces is:

v(x0) =

n∑
m=1

[
− 1

8πµ

∫
Dm

G(x,x0) · (fv(x)− fu(x))dS(x)

+
1

8π

∫
Dm

T(x,x0) · v(x) · n(x)dS(x)

− λ

8π

∫
Dm

T(x,x0) · u(x) · n(x)dS(x)

]
+

1

8πµ

∫
S

G(x,x0) · fv(x)dS(x)

− 1

8π

∫
S

T(x,x0) · v(x) · n(x)dS(x) (2.2)

Taking the limit as x0 approaches S from the inside of the tube:

lim
x0→S−

∫
S

T(x,x0) · v(x) · n(x)dS(x) = −4πv(x0 ∈ S)

+

∫
S

T(x,x0 ∈ S) · v(x) · n(x)dS(x) (2.3)

Applying 2.3 to 2.2 and rearranging terms:∫
S

G(x,x0 ∈ S) · fv(x)dS(x) = 4πµv(x0 ∈ S)

+µ

∫
S

T(x,x0 ∈ S) · v(x) · n(x)dS(x)

+

n∑
m=1

[ ∫
Dm

G(x,x0 ∈ S) · (fv(x)− fu(x))dS(x)

−µ
∫
Dm

T(x,x0 ∈ S) · v(x) · n(x)dS(x)

+λµ

∫
Dm

T(x,x0 ∈ S) · u(x) · n(x)dS(x)

]
(2.4)

Boundary conditions (4) and (5) (see main text) are applied to produce an expression for the stress in the outer flow f (v) at
the tube surface S:∫

S

G(x,x0 ∈ S) · fv(x)dS(x) = 4πµv(x0 ∈ S)

+ µ

∫
S

T(x,x0 ∈ S) · v(x) · n(x)dS(x)

+

n∑
m=1

[ ∫
Dm

G(x,x0 ∈ S) · κn(x)dS(x)

− (1− λ)µ

∫
Dm

T(x,x0 ∈ S) · v(x) · n(x)dS(x)

+ kmλµ

∫
Dm

T(x,x0 ∈ S) · n(x) · n(x)dS(x)

]
(2.5)

To calculate the velocity on the drop surface Dl, the limit as x0 approaches Dl from the exterior is taken for the outer flow
and inner flow terms:

lim
x0→D+

∫
D

T(x,x0) · v(x) · n(x)dS(x) = 4πv(x0 ∈ Dl)
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+

∫
D

T(x,x0 ∈ Dl) · v(x) · n(x)dS(x) (2.6)

lim
x0→D+

∫
D

T(x,x0) · u(x) · n(x)dS(x) = 4πu(x0 ∈ Dl)

+

∫
D

T(x,x0 ∈ Dl) · u(x) · n(x)dS(x) (2.7)

Applying 2.6 and 2.7 to 2.2 and rearranging terms:

v(x0 ∈ Dl) =

n∑
m=1

[
− 1

4πµ

∫
Dm

G(x,x0 ∈ Dl) · (fv(x)− fu(x))dS(x)

+
1

4π

∫
Dm

T(x,x0 ∈ Dl) · v(x) · n(x)dS(x)− λu(x0 ∈ Dl)

− λ

4π

∫
Dm

T(x,x0 ∈ Dl) · u(x) · n(x)dS(x)

]
+

1

4πµ

∫
S

G(x,x0 ∈ Dl) · fv(x)dS(x)

− 1

4π

∫
S

T(x,x0 ∈ Dl) · v(x) · n(x)dS(x) (2.8)

Boundary conditions (4) and (5) in the main text are again applied to produce an expression for the velocity v at the drop
surface Dl:

v(x0 ∈ Dl) =
1

4πµ(1 + λ)

∫
S

G(x,x0 ∈ Dl) · fv(x)dS(x)

− 1

4π(1 + λ)

∫
S

T(x,x0 ∈ Dl) · v(x) · n(x)dS(x)− λ

1 + λ
kln

+

n∑
m=1

[
− 1

4πµ(1 + λ)

∫
Dm

G(x,x0 ∈ Dl) · κn(x)dS(x)

+
1− λ

4π(1 + λ)

∫
Dm

T(x,x0 ∈ Dl) · v(x) · n(x)dS(x)

−km
λ

1 + λ

1

4π

∫
Dm

T(x,x0 ∈ Dl) · n(x) · n(x)dS(x)

]
(2.9)

Equations 2.5 and 2.9 are the equations used to advance the drop shape with time.

3 Validation of Numerical Method
The results obtained for the case of a single drop with the dissolution rate k1 = 0 are used to validate the numerical method
by comparison to the previously published work of Martinez and Udell7. Additionally, these results establish the conditions
necessary to investigate the effects of drop dissolution without the drop size and the separation distance between drops artificially
impacting the results. The tube surface was meshed with 450 uniformly spaced node points and L = 40 [see text]. The
drop surface was initialized with 300 uniformly-spaced node points, with additional points added when the distance between
consecutive node points exceeded the minimum distance between a drop node point and a wall node point. The initial drop shape
was specified as a circle for a < 0.9 and as an ellipse for a ≥ 0.9. The drop velocity was initialized as zero.

Fig. 2 shows steady-state values of the drop velocity U1 as a function of the drop size a for different values of Ca with λ = 1.
When the drop size is very small, U1 approaches the centerline velocity of the outer fluid, U ′1/V

′ = 2, and is independent of Ca
and λ. As the drop size increases, the drop experiences an increased resistance to its motion due to the presence of the wall, and
its velocity decreases. For drop sizes a > 1.1, the film thickness between the drop and wall reaches an asymptotic value with
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respect to a and consequently, so does U1. The mean fluid velocity across the entire tube must be equal to v̄, therefore the smaller
the film thickness between the drop interface and the wall, the lower the mean drop velocity U1. Because the film thickness
decreases with decreasing Ca, so does U1.

When k1 = 0, a steady-state solution to the drop shape that is independent of our chosen inital shape exists for Ca up to 0.8,
and the mean velocity of the drop, U1, becomes constant with time when this shape is achieved (see Supplementary Information-
Section 3). For the drop sizes a > 1.1 that are the focus of this study, the steady-state shape is characterized by a uniform
thickness. This asymptote results from the fact that only the transition regions of the drop at the front and back contribute to the
pressure drop in the flow direction, and therefore the length of the film region in the middle of the drop where the axial curvature
is zero has no impact on the balance between the interfacial stress and the outer fluid stress8,9. The effects of λ and Ca on the
steady-state film thickness in this large a asymptote are shown in Fig. 3. The results demonstrate excellent agreement with the
work of Martinez and Udell7.

The distance from the wall at which the outer fluid stress can be balanced by the drop interface is determined by Ca. At large
Ca, the interfacial stress is relatively small, and the outer fluid stress pushes the interface farther away from the wall. As Ca
decreases, the interfacial stress increases and the stiffer drop surface is able to balance the outer fluid stress at a position closer to
the wall. In addition to explicitly defining the relationship between film thickness and Ca, Fig. 3 also demonstrates that larger
λ drops have larger film thicknesses due to their ability to balance the shear stress imposed by the outer fluid at a radial position
farther from the tube wall where the shear rate is lower. However, note that the film thickness becomes a weak function of λ for
Ca < 0.01, as was shown by Hodges et al.9, as the interfacial stress becomes dominant.

To determine the separation distance required to prevent multiple drops in sequence from influencing each other under steady-
state conditions, the outer fluid velocity at the tube centerline was evaluated as a function of its distance from the front of a drop
at steady-state. The distance from the drop surface at which this velocity reached its ambient value was used as a minimum value
for half of the edge-to-edge drop separation distance at which drops were located at the initialization of dissolution. This ensured
that changes to the drop shape and velocity were the result of dissolution and not the initial proximity of a sequential drop. As
shown in Fig. 4, this minimum distance is nearly independent of Ca and λ.
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Figure 1 Schematic for the discussion of the interfacial boundary condition for dissolution. The vector vn is the normal vector pointing from
the drop phase into the suspending fluid phase. The interfacial tension is γ′, and the dissolution velocity of the interface is k′. The velocity
field,density and dissolving species concentration in the suspending medium are v′, ρ

′
v and C

′
v , respectively, while the corresponding

quantities in the drop phase are u′, ρ
′
u and C

′
u. k′m is the mass transfer coefficient in the suspending medium. The bulk concentration of the

dissolving species in the suspending medium far away from the interface is C∞. The suspending medium viscosity is µ′.
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Figure 2 Mean drop velocity U1 vs. drop size a, λ = 1, k1 = 0. All drop velocities reach an asymptote with respect to a = a′/R′ when
a > 1.1.
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Figure 3 Film thickness vs. capillary number for the large drop size asymptote a ≥ 1.1.
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Figure 4 Outer fluid velocity v vs. distance from drop edge at tube centerline, k1 = 0. The deviation from the ambient velocity is less than
0.01% at a distance of 1.5 from the leading edge of the drop; this distance is nearly independent of Ca and λ.
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