Supracolloidal reconfigurable polyhedra via hierarchical self-assembly

Daniel Morphew and Dwaipayan Chakrabarti ${ }^{\star}$
School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
E-mail: d.chakrabarti@bham.ac.uk; use this e-mail address for data.

Supplementary Results

In Table S1, we present some geometric features for the set of convex snub polyhedra. ${ }^{\underline{1}}$ It is evident that the snub tetrahedron is the smallest in this series. We note here that the snub tetrahedron is an icosahedron for having twenty faces; however, we have preferred to use the name 'snub tetrahedron' when it is of tetrahedral symmetry as it is then informative of the symmetry of the structure it refers to.

Table S1: A comparison of the geometric features of convex snub polyhedra. Here V is the number of vertices, F is the number of faces and E denotes the number of edges.

Polyhedron	Symmetry	V	F	E
Snub tetrahedron	T	12	20	30
Snub cube	O	24	38	60
Snub dodecahedron	I	60	92	150

Table S2: A comparison of the anti-parallel arrangements of the dipoles in two neighbouring secondary building blocks of two low-lying minima for $N=12$ charge-stabilised colloidal magnetic particles, where $\theta=0^{\circ} . \phi$ is the angle between the dipole vectors, $R_{i j}$ is the distance between the centers of the spherical colloidal particles, $r_{i j}$ is the distance between the point-dipoles and $E_{a p}$ is the potential energy contribution arising from the two dipoles.

Minimum	ϕ	$R_{i j} / \sigma$	$r_{i j} / \sigma$	$E_{a p} / \varepsilon_{\mathrm{Y}}$
The bowl structure	172.8	1.02	0.8	-7.66
The spherical structure	164.8	1.05	0.86	-6.04

Table S3: A comparison of the anti-parallel arrangements of the dipoles in two neighbouring secondary building blocks of two low-lying minima for $N=12$ charge-stabilised colloidal magnetic particles, where $\theta=10^{\circ} . \phi$ is the angle between the dipole vectors, $R_{i j}$ is the distance between the centers of the spherical colloidal particles, $r_{i j}$ is the distance between the point-dipoles and $E_{a p}$ is the potential energy contribution arising from the two dipoles.

Minimum	ϕ	$R_{i j} / \sigma$	$r_{i j} / \sigma$	$E_{a p} / \varepsilon_{\mathrm{Y}}$
The spherical structure	166.3	1.07	0.94	-4.74
The bowl structure	174.7	1.05	0.92	-5.11

Figure S1: The triangular subunits formed as the secondary building blocks in the hierarchical self-assembly route to hollow spherical structures. (a) The triangular subunit for $\theta=0^{\circ}$; (b) the triangular subunit for $\theta=10^{\circ}$.

Figure S2: The competing structures, characterised as the low-lying minima on the energy landscape, for $N=$ 12 charge-stabilised magnetic colloids. Representative examples of the anti-parallel arrangement of the dipoles in neighbouring secondary building blocks are clearly shown here and the dipoles concerned are highlighted in yellow. (a) The ground state structure for $\theta=0^{\circ}$; (b) the ground state structure for $\theta=10^{\circ}$. Here θ defines the angle between the direction of the dipole and the radial shift.

Figure S3: The two structures characterised as the low lying minima on the energy landscape for $N=15$ charge-stabilised colloidal magnetic particles, where $\theta=10^{\circ}$. (a) The ground state structure, which consisted of the snub tetrahedron plus an additional triangular subunit; (b) the bowl structure, a low lying minimum, with an emergent five-fold rotational symmetry.

Movies

- Movie 1: The dominant pathway characterised for the self-assembly into the tubular anti-prismatic ground state structure for $N=16$ charge-stabilised magnetic colloidal particles where $\theta=90^{\circ}$ and $\alpha=0.3$, starting from a high-energy, relatively disordered local minimum. The secondary building blocks are colour-coded distinctly as they are formed for visual aid.
- Movie 2: The dominant pathway characterised for the self-assembly into the ground state structure, topologically equivalent to the snub tetrahedron, for $N=12$ charge-stabilised magnetic colloidal particles where $\theta=10^{\circ}$ and $\alpha=0.6$, starting from a high-energy, relatively disordered local minimum. The secondary building blocks are colour-coded distinctly as they are formed for visual aid.

References

[1] P. R. Cromwell, Polyhedra, Cambridge University Press, Cambridge, 1997.

