Supplementary Information Electrohydrodynamic behavior of droplets in an microfluidic oil-in-oil emulsion

Somayeh Khajehpour Tadavani, James R. Munroe, and Anand Yethiraj

Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada

I. DROP BREAKUP AND COALESCENCE

Breakup: Movie 1 (left panel, $E = 9.5 \text{ V}/\mu\text{m}$) shows a time series for the breakup of a large pancake-shaped drop. Breakup events can be spotted at 7.4 s, 14.6 s, and 16.9 s Cell thickness $d = 27 \,\mu\text{m}$. The middle panel ($E = 8.5 \text{ V}/\mu\text{m}$) shows the breakup a drop in a thicker ($d = 55 \,\mu\text{m}$) cell. Here the drop is close to spherical, and breakup occurs by deformations in the plane perpendicular to the field. Breakup occurs at 3.60 s.

Coalescence: Movie 1 (right panel, cell thickness $d = 96 \ \mu m$, $E = 3.5 \ V/\mu m$) shows a drop coalescence event. The third dimension is crucial to the coalescence event, with a drop detaching from a bounding substrate at around 0.7 s, moving above a larger drop. Both drops are oblate, so this configuration allows their flat faces to touch. Coalescence occurs at $\approx 2.5 \ s$.

II. DROP DYNAMICS

Movie 2 (left panel) shows a time series for the short-time dynamics of drops for t < 0.9 s. In this regime, the mean-square displacements are linearly dependent on time. $d = 55 \ \mu \text{m}$. $E = 12.5 \ \text{V}/\mu \text{m}$

Movie 2 (right panel) shows the long-time dynamics (t < 9 s) for the same sample conditions. Some directed motion is observable.

Supplementary Figure 1 shows the mean square displacements as a function of time for the thinnest cell $(d = 27 \ \mu m)$. This dependence can be fitted to a linear form for intermediate electric fields, and to MSD = $K_1 t + K_2 t^2$ for larger electric fields. There is no motion at all for low fields. The prefactor to the quadratic term yields the advection: $v = \sqrt{K2}$. Since the square of this speed is proportional to the kinetic energy, and E^2 is proportional to the injected electric field energy, one would expect that $v \propto E$.

FIG. 1: **Drop Dynamics.** (a) Mean-squared displacement as a function of time shows a roughly linear dependence at intermediate fields and quadratic dependence at higher fields. (b) The advective term can be obtained from the fits in (a). A linear fit is shown.

III. FIELD THRESHOLDS

Two field thresholds are identified from the thickness dependence study and shown in FIG. 2. The first is the field threshold, as a function of cell thickness, where drop breakup occurs. The second is the field threshold, as a function of cell thickness, when drops are displacing and changing shape rapidly enough that particle tracking is not feasible.

FIG. 2: Field Thresholds. Field thresholds for drop breakup and for vigorous drop motion (evaluated by inability to track drops) as a function of cell thickness. For the $d = 27 \ \mu m$ cell, particle tracking is always possible.

IV. CONVECTION WITH DROPLETS AND PMMA COLLOIDS

Movie 3 shows convection of droplets (left panel, $E = 4.5 \text{ V}/\mu\text{m}$) and particles (PMMA colloids, right panel, $E = 2.4 \text{ V}/\mu\text{m}$) close to the instability threshold.

V. MIXING OF DYED AND NON-DYED CASTOR OIL IN THE PRESENCE OF THE ELECTRIC FIELD

Movie 4 shows the dynamics of the interface, obtained with time-lapse macro scale photography and white light illumination, between dyed castor oil (top) and non-dyed castor oil (bottom), without and with an applied electric field. Left panel: With $E = 0 \text{ V}/\mu\text{m}$, there is no distinguishable motion of the interface over a period of 3 hours. Right panel: with the field on, $E = 8 \text{ V}/\mu\text{m}$, rapid blurring of the interface between the dyed and non-dyed regions is observed over a time scale of ≈ 15 minutes.