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I. DROP BREAKUP AND COALESCENCE

Breakup: Movie 1 (left panel, E = 9.5 V/µm) shows a time series for the breakup of a large pancake-shaped drop.
Breakup events can be spotted at 7.4 s, 14.6 s, and 16.9 s Cell thickness d = 27 µm. The middle panel (E = 8.5 V/µm)
shows the breakup a drop in a thicker (d = 55 µm) cell. Here the drop is close to spherical, and breakup occurs by
deformations in the plane perpendicular to the field. Breakup occurs at 3.60 s.

Coalescence: Movie 1 (right panel, cell thickness d = 96 µm, E = 3.5 V/µm) shows a drop coalescence event. The
third dimension is crucial to the coalescence event, with a drop detaching from a bounding substrate at around 0.7 s,
moving above a larger drop. Both drops are oblate, so this configuration allows their flat faces to touch. Coalescence
occurs at ≈ 2.5 s.

II. DROP DYNAMICS

Movie 2 (left panel) shows a time series for the short-time dynamics of drops for t < 0.9 s. In this regime, the
mean-square displacements are linearly dependent on time. d = 55 µm. E = 12.5 V/µm

Movie 2 (right panel) shows the long-time dynamics (t < 9 s) for the same sample conditions. Some directed motion
is observable.

Supplementary Figure 1 shows the mean square displacements as a function of time for the thinnest cell (d = 27 µm).
This dependence can be fitted to a linear form for intermediate electric fields, and to MSD = K1t + K2t

2 for larger
electric fields. There is no motion at all for low fields. The prefactor to the quadratic term yields the advection:
v =
√
K2. Since the square of this speed is proportional to the kinetic energy, and E2 is proportional to the injected

electric field energy, one would expect that v ∝ E.

FIG. 1: Drop Dynamics. (a) Mean-squared displacement as a function of time shows a roughly linear dependence at intermediate
fields and quadratic dependence at higher fields. (b) The advective term can be obtained from the fits in (a). A linear fit is shown.

III. FIELD THRESHOLDS

Two field thresholds are identified from the thickness dependence study and shown in FIG. 2. The first is the field
threshold, as a function of cell thickness, where drop breakup occurs. The second is the field threshold, as a function
of cell thickness, when drops are displacing and changing shape rapidly enough that particle tracking is not feasible.
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FIG. 2: Field Thresholds. Field thresholds for drop breakup and for vigorous drop motion (evaluated by inability to track drops) as a
function of cell thickness. For the d = 27 µm cell, particle tracking is always possible.

IV. CONVECTION WITH DROPLETS AND PMMA COLLOIDS

Movie 3 shows convection of droplets (left panel, E = 4.5 V/µm) and particles (PMMA colloids, right panel,
E = 2.4 V/µm) close to the instability threshold.

V. MIXING OF DYED AND NON-DYED CASTOR OIL IN THE PRESENCE OF THE ELECTRIC
FIELD

Movie 4 shows the dynamics of the interface, obtained with time-lapse macro scale photography and white light
illumination, between dyed castor oil (top) and non-dyed castor oil (bottom), without and with an applied electric
field. Left panel: With E = 0 V/µm, there is no distinguishable motion of the interface over a period of 3 hours.
Right panel: with the field on, E = 8 V/µm, rapid blurring of the interface between the dyed and non-dyed regions
is observed over a time scale of ≈ 15 minutes.
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