
Electronic Supplementary Information
Model of the finite sliding and stress-stretch relation

Let us first consider Stage II of the deformation.  The mesh 
layer is taken to be linear elastic:
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When the mesh is in a critical state and the island is about to 
fracture, the maximum membrane force in the non-sliding 
zone C reaches a critical value, .  The deformed length *ff 
of zone C, , is related to the undeformed length  by r 0r

.  In the sliding zone B, the lateral force balance  kfrr  10

of the mesh layer dictates a linear distribution of the 
membrane force:

.  (S-2)xf 

Utilizing Eqs. (S-1) and (S-2) and considering (3), we obtain the 
relation between the deformed length  and the L
corresponding length before deformation :0L
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Now let us turn to the deformation in the tape.  Due to the 
finite sliding, the part of the tape that was beneath the mesh 
island is significantly stretched.  Denote the total deformed 
length of the sliding segment by .  The horizontal equilibrium l
of the tape gives the stress distribution
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where  is the stress in the non-sliding segment C.  In the 0
absence of relative sliding, the strain in the tape in zone C 
matches with that in the mesh, and  is the corresponding 0
axial stress.  When a certain constitutive model for the VHB 
tape selected, and the stress-stretch relation  is  
prescribed, Eq. (S-4) can be used to determine the 
deformation field in the tape layer.  Here by referring to the 
test result of the VHB tape, we select the incompressible neo-
Hookean model, of which the uniaxial nominal stress is related 
to stretch as
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When the mesh in zone C reaches the critical point, , the  ff
stress in the underlying tape layer is
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where  is the fracture stretch of the mesh.kf 1*

By integrating the inverse of stretch over the deformed length 
of the sliding zone on the tape, a relation between its original 
length  and the deformed length  can be obtained:0L l
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The integral can be evaluated numerically with the stretch 
values obtained from Eqs. (S-4-S-6).  The system has two 
dimensionless parameters: the stretch at fracture of the mesh

, and the ratio between the strength of the mesh and the *
stiffness of the tape .  Just as the first network in the Hf 

DN gel, the mesh provides the overall stiffness of the 
composite and acts as the sacrificial component.  With limited 
stretchability, the range of the critical stretch  is relatively *
small and is thus not a major contributor to the toughness of 
the composite.  On the other hand, the strength-stiffness ratio 

 plays an important role in the stretchability and Hf 

toughness of the composite.  Here by taking a representative 
value  and integrating (10) numerically, we plot the 2.1* 
average stretch  in the sliding zone of the VHB tape as a 0Ll
function of the dimensionless parameter  in Fig. S1.  As Hf 

shown by Fig. S1, for relatively large ,  Hf 
0Ll

approximately scales linearly with .Hf 

Subdividing of larger islands continues until each island 
becomes too small to be subdivided, i.e. the length of the island 
becomes smaller than .  For an island even smaller, the f2
axial force accumulated from the shear lag can no longer reach 

.  The cessation of the island-fragmentation mechanism *f
corresponds to the end point of the plateau stage on the stress-
strain curve, and the deformation goes into Stage III.  In a small 
island where the non-sliding zone  shrinks to 0, and thus the r
stretches in the two layers do not need to match.  The minimum 
stress in the tape  is no longer determined by Eq. (S-6).  0
Instead, the stress distribution in the tape layer can be rewritten 
as

. (S-8)
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The stress in the tape layer maximizes in the gap between 
neighboring mesh islands, and the maximum stress  is just 

 Figure S1.  Average stretch in the sliding segment of the tape, plotted as a 
function of the ratio between the strength of the mesh and the stiffness of the 
tape, . Hf 
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the overall axial stress of the composite.  As the maximum 
force in the mesh is bounded by level limited by the island size, 
no further fragmentation is possible, the stress in the tape 
layer and thus the overall stress of the composite will keep 
increasing in Stage III.  The stress-stretch relation could be 
evaluated numerically by combining Eqs. (6) and (8) and 
substituting into Eq. (7).  Ultimately, the composite fails by 
rupturing the tape layer, when the maximum stress in the tape 

 reaches its strength .  Due to the stress concentration  tapes
in the 2D non-homogeneous deformation, it is expected that 
the actual fracture stress of the composite is lower than the 
strength of the VHB tape.

By using the model presented above, the effective stress-
stretch curve of the composite can be reconstructed 
theoretically, as shown by Fig. S2 and Fig. 11 in the paper.

 Figure S2. Theoretical prediction by considering the interaction in the sliding 
zone with a shear-lag model of constant sliding stress. Material parameters 
are extracted from independent experiments on base materials.


