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Figure S1: Non-bonded pair potentials for the three-bead model. 
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Figure S2: (a) Equilibrated crystal structure obtained from the single-bead model, containing 

800 beads corresponding to 800 phenytoin molecules. (b) A comparison of the atomistic RDF 

with the single-bead coarse-grained RDF 
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Figure S3: (a) Root-mean square deviation (RMSD) of atoms from their crystal lattice points as 

a function of time for (a) single-bead and (b) three-bead model.  
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Figure S4: Crystal growth study of phenytoin with atomistic simulation: (a) Initial configuration 

and (b) configuration after 100 ns long simulation run. There was no signature of crystal growth 

during this period of simulation. 
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Figure S5: Temperature-dependent growth rate of the crystal slab for the [100] surface.  

Table S1: Bonded potential parameters for the three-bead model 

Bonds Kb (KJ mol-1 nm-2) r0 (nm) 

A-A 36250 0.477 

A-B 46750 0.395 

 

Table S2: Comparison of the unit cell parameters obtained from different models with the 

experimental results.  

Method/Model a (nm) b (nm) c (nm) 𝛼 (deg) 𝛽 (deg) 𝛾 (deg) 
Single-bead 0.618 1.345 1.538 90 90 90 
Three-bead 0.618 1.346 1.537 90 90 90 
Atomistic 0.617 1.344 1.537 90 90 90 

Experimental 0.620 1.360 1.550 90 90 90 
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Meta-dynamics simulation:  

We have used well tempered meta-dynamics technique1 to accelerate sampling of the free energy 

landscape of the possible polymorphs. In this technique a biased potential is added to the system 

along predefined collective variables or reaction coordinates. The collective variables are a set of 

parameters that is capable of identifying different forms of a given structure. A crystalline 

molecule differs from a liquid molecule in its local density and molecular orientation. So the 

local crystallinity of a molecule should be included in the definition of the collective variable. 

Inspired by recent works on urea nucleation2 and crystal growth from solution3, we introduced a 

pair of collective variables as described below. These collective variables measure the overall 

crystallinity of a system as a sum of the crystallinity of individual molecules. 

The local crystallinity of a molecule can be measured by a product of local coordination number 

and local orientation of the molecule. The coordination number of a molecule can be computed 

by a switching function 𝑓!"; 

𝑓!" =
1− !!"

!!

!

1− !!"
!!

!                                       (𝑆1) 

where 𝑟!"is the distance between the 𝑖!! and 𝑗!! molecules, 𝑟! is an arbitrary cut-off and n, m are 

positive numbers given in Table S3, where m >> n, so that the nearest neighbors contribute most 

strongly to 𝑓!". The coordination number of the molecule can be computed as 𝑛! = 𝑓!"! , where 

the index 𝑗 runs over the total number of molecules, 𝑁. A similar function 𝜌! is introduced in the 

coordination space as equation S2, which helps to identify whether the local coordination 

number of a molecule is liquid-like or solid like. 

  

𝜌! =
1− !!

!!

!!

1− !!
!!

!!                                     (𝑆2) 

where we take 𝑛! = 2, and n1, m1 are large negative numbers with –m1 >> -n1; see Table S3. 
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To measure the local orientation of the molecule relative to its neighbors, we define a Gaussian 

function, 𝑜!"as below, 

𝑜!" = 𝑒𝑥𝑝 −
𝜃!" − 𝜃!

!

2𝜎!!

!!"#

!!!

                                (𝑆3) 

where  𝜃!" is the angle between a particular kind of internal vector (described later) of the 𝑖!! 

molecule and that of the 𝑗!! molecule. Here 𝜃!is the angle made by this internal vector with its 

neighbors in the crystal structure and 𝜎! is the standard deviation corresponding to the 

angle  𝜃!.  𝐾!"#is the number of different kinds of angles made by an internal vector with its 

neighbors. Thus, the local crystallinity of a molecule can be measured as below: 

𝑐! =
𝜌!
𝑛!

𝑓!"𝑜!"                             (𝑆4)
!

!!!

 

So the final expression for the collective variable becomes as below: 

𝐶𝑉 =
𝜌!
𝑛!

𝑓!" 𝑒𝑥𝑝 −
𝜃!" − 𝜃!

!

2𝜎!!

!!"#

!!!

!

!!!

                          (5)
!

!!!

 

The value of the collective variable is close to the number of molecules, N, in a perfectly 

crystalline system and becomes close to zero in a disordered system. 

  

.  

 

 

Figure S6: Schematic diagram of the internal vectors used for collective variables. V1 and V2 

were used for CV1 and CV2, respectively. 
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Two collective variables, CV1 and CV2 were used to bias the system. These two collective 

variables are based on two different internal vectors of the molecule as shown in figure S6.  

The parameters used to compute the CV1 and CV2 are given in table S3.  

Table S3: Parameters used in meta-dynamic simulations.  

parameter 𝑛 𝑚 𝑛1 𝑚1 𝑟! (nm) 𝑛! 𝜃!(deg) 𝜎! (deg) 

CV1 60 120 -60 -120 0.8 2.0 5.2,174.8 17.2,17.2 

CV2 60 120 -60 -120 0.8 2.0 5.2,174.8 17.2,17.2 

 

 

 

 

Figure S7: Equilibrated structure of the new polymorph obtained from (a) coarse-grained and (b) 

atomistic simulation. 
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Quantum calculation:  

To validate the atomistic prediction, we also investigated the pressure-dependent phase transition 

of phenytoin crystal using density functional theory (DFT). These calculations were carried out 

with the Quantum Espresso package4. The ‘London dispersion’ corrections were also included in 

the calculations. The BFGS5 algorithm was used for geometry optimization. The DFT 

calculations were done within the Perdew-Burke-Ernzerhof (PBE) corrected generalized-gradient 

approximation (GGA)6as implemented in the Quantum Espresso code. The electron wave 

functions were expanded in the plane wave basis set with a cut-off energy of 25 Ry and the plane 

waves with kinetic energy up to 200 Ry were used for the charge density. The relaxation of the 

structure was considered to be complete when the force on each atom was less than 1.0 mRy/au 

and change in total energy was less than 0.1mRy during the iterative optimization process. 

 

Table S4: Unit cell parameters of the new polymorph obtained from different simulation 

methods. 

method 𝑎 𝑏 𝑐 𝛼 (deg) 𝛽 (deg) 𝛾 (deg) 

Coarse-grain 1.016 0.565 0.992 90 102.51 90 

Atomistic* 1.012 0.616 0.998 90 102.43 90 

DFT 0.964 0.610 0.961 90 104.11 90 

*CHARMM 
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Figure S8: Enthalpy of the crystal structures as a function of pressure obtained from CHARMM 

force fields. Enthalpy of the experimental structure is set at zero at 1bar pressure. Inset shows the 

change in enthalpy (Δ𝐻 = 𝐻!"#!!"#$%"&!! −   𝐻!"#!$%&!'()*) as a function of pressure. 
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