Supporting Information

Magnetically-active Pickering Emulsions Stabilized by Hybrid Inorganic/Organic Networks

Jeniree A. Flores,^a Ashlee A. Jahnke,^a Zhengdong Cheng,^b and Karen L. Wooley^a

^aDepartment of Chemistry, Department of Chemical Engineering, Department of Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX 77842, United States

^bArti McFerrin Department of Chemical Engineering and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, United States

Figure S1. Pictographic representation of a suspension of MHNs in water (left), toluene (center) and dodecane (right) immediately after resuspension, and the stability of the resuspension over a period of 20 minutes.

Figure S2. Dodecane-water emulsions prepared at different W : O ratios before (top) and after (bottom) emulsification *via* two different methods: Vortex (left) and probe sonication (right).

Table S1. Interfacial tension (γ) values. MHN aqueous suspension [0.5 mg/mL].

Interfacial Tension (y)		
	Media	
Drop Solvent	Toluene (mN/m)	Dodecane (mN/m)
Distilled Water	35.4 ± 0.1	53.7 ± 0.3
Nanopure Water	31.4 ± 1.6	51.7 ± 0.6
Supernatant of MHNs	30.8 ± 0.1	51.6 ± 0.8
Suspension of MHNs	21.3 ± 2.2	51.5 ± 0.7
% Reduction in the Interfacial Tension	32.2	0

Figure S3. Pictographic representation of toluene-water emulsions prepared *via* vortex at three different W : O ratios. Scale bar = 1 inch.

Figure S4. Histogram of the droplet size distribution of toluene-water emulsions prepared *via* probe sonication at various W : O ratios.

Figure S5. Histograms of the droplet size distribution of toluene-water emulsions prepared *via* vortex (a) and probe sonication (b), at a W : O = 3 : 1 and varying concentrations of MHNs.

Figure S6. Recovery of MHNs after probe sonication *via* magnetic action, where the test sample was subjected to probe sonication, whereas the control sample was not.

Figure S7. Confocal laser micrographs depicting the type of toluene-water emulsions formed *via* vortexing at a [MHN] = 1 mg/mL and varying W : O ratios.

Figure S8. Scanning electron microscopy (SEM) image of polystyrene beads synthesized from the emulsion polymerization of styrene droplets stabilized by amine-IONs in water.

Figure S9. Confocal laser micrographs of a toluene-water emulsion formed *via* vortexing at a [FITC-MHN] = 1 mg/mL and W : O = 3 : 1, stabilized by FITC-MHNs. Images were taken at various positions along the z axis, beginning from the bottom (upper left image) and progressively moving to the top (bottom right). Scale bar = 100 μ m.

Figure S10. By clicking the .mp4 file above, or on the next page, see a video of magnetically-active toluene-in-water emulsion droplets produced from MHNs in W : O at a ratio of 3 : 1.

