SUPPORTING INFORMATION

Hydrogen-Bonded Polymer Complexes and Nanocages of Weak Polyacids Templated by a Pluronic® Block Copolymer

Yuhao Wang[#] and Svetlana A. Sukhishvili*

[#]Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of

Technology, 507 River Street, Hoboken, New Jersey 07030, United States

*Department of Materials Science and Engineering, Texas A&M University, 575 Ross St.,

College Station, TX 77843

Fig. S1. (a) The calibration curve constructed using the ratio of integrated FTIR intensities in the >C=O stretching region of PMAA₁₅₀ (sum of 1700 and 1730 cm⁻¹ bands) to that of -C-O-C-stretching vibrations of F127 (sum of 1070 and 1104 cm⁻¹ bands) measured in the polymer mixtures with known compositions. (b) FTIR spectra of PMAA₁₅₀/F127 complexes precipitated from solutions at various mass ratios.

Fig. S2. (a) Hydrodynamic diameters of PMAA₈₀/F127 complexes with different ratios of components as a function of temperature. (b) The phase diagram of PMAA₈₀/F127 complexes in solutions at pH 2. Concentration of F127 was 0.5 wt%.

Fig. S3. DLS measurements in PMAA₁₅₀/F127 solutions of various compositions prepared using different mixing paths at 25 $^{\circ}$ C (a-d), or using the same mixing path, but different temperatures (e,f). The blue dotted line indicates the cutoff in the PEC sizes above which extensive PEC precipitation occurred.

Fig. S4. (a) Reversibility and hysteresis in hydrodynamic sizes measured in PAA₄₅₀/F127 0.25/1 solutions upon sequential heating and cooling using 10-min equilibration at each temperature. (b) Response of hydrodynamic diameters of PAA₄₅₀/F127 0.25/1 complexes to temperature variations. The insets are images of the PEC solution exposed to different temperatures.

Fig. S5. Time evolution of hydrodynamic diameters of PAA₄₅₀/F127 complexes of various compositions at different temperatures.

Fig. S6. Hydrodynamic diameters of $PAA_{450}/F127$ complexes prepared using different mixing paths at 25 °C (a), or using the same mixing path at different temperatures (b).

Fig. S7. Calibration curve constructed using PAA₄₅₀/F127 polymer mixtures with known mass ratios. The y axis shows the ratio of integrated intensities of absorption bands in the 1700 -1730 cm⁻¹ region to those in the 1000 -1150 cm⁻¹ region as determined by the curve fitting procedure shown in Fig. 5.

Fig. S8. Fluorescence spectra of pyrene obtained at the excitation wavelength of 332 nm with PMAA₁₅₀/F127, PAA₄₅₀/F127, PAA₅/F127 and F127 solutions at pH 2. Concentration of F127 in all solutions was 0.5 wt%.

Fig. S9. FTIR spectra of F127 (red) and PAA5 nanoparticles, achieved by crosslinking PAA5/F127 0.75/1 complexes in the solution and removing F127 by dialysis at pH 7 (black).

Fig. S10. TEM images of PAA₅ nanoparticles with (a) low and (b) high density of crosslinks (CR) prepared from solutions at pH 2 (left) and pH 7 (right). The histograms of the particle diameters were calculated by analyzing \sim 50 particles in the TEM images.