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Derivation to the distribution of flow velocity and turgor pressure

The Navier-Stokes (N-S) equation is given by 

                  (S1)
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where  is the fluid density,  is the kinematic viscosity (m2·s−1). The five terms 𝜌
𝑣 =

𝜂
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above represents the local inertia force, inertia force of convection, pressure force, 

viscosity force, and body force. In order to estimate the relative value of inertia force 

and viscosity force, the characteristic time , characteristic length  and characteristic 𝑡𝑜 𝐿
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, where , so𝑁𝑠 = 𝑆𝑡 ∙ 𝑅𝑒
𝑆𝑡 =
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When , we neglect the terms of the local inertia force and inertia force of 𝑅𝑒→0,𝑁𝑠→0

convection. We also discard the body force. Eq. (S1) is simplified as

                             (S2)𝜂∇2𝑢 = ∇𝑝

Where  is the dynamic viscosity ( ).𝜂 𝑃𝑎 ∙ 𝑆

The incompressible condition of Newtonian fluid is given as

=0                               (S3)∇ ∙ 𝑢 

Eqs. (S2) and (S3) describe the Stokes flow in pollen tube.
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 Boundary conditions

Sliding wall boundary at the pollen tube wall

                               (S4)𝑢𝑧 = 𝑢̅𝑧

If  is the growth rate of pollen tube, the flux through the section of pollen tube𝑉𝑃𝑜𝑙𝑒

                         (S5)

𝑅
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2𝜋𝑟𝑢𝑧𝑑𝑟 = 𝑉𝑃𝑜𝑙𝑒𝜋𝑅2

 Solution

In the idealized pollen tube, velocity components are  The 𝑢𝑧 = 𝑢𝑧(𝑟), 𝑢𝑟 = 𝑢𝜃(𝑟) = 0

velocity components automatically meet continuity equation Eqs. (S3). According to 

momentum equation Eqs. (S2), pressure distribution is  Eqs. (S2) becomes𝑝 = 𝑝(𝑧)

                         (S6)

1
𝑟

𝑑
𝑑𝑟(𝑟

𝑑𝑢
𝑑𝑟) =

1
𝜂

𝑑𝑝
𝑑𝑧

Integrating Eqs. (S6), we get 
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Because of  and , we get 𝑢𝑧(𝑟 = 0) ≠ ∞⇒𝐴 = 0 𝑢𝑧(𝑟 = 𝑅) = 𝑢̅𝑧⇒𝐵 = 𝑢̅𝑧 ‒
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Substituting exp. (S8) into Eqs. (S5), we get 
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Substituting Eqs. (S9) into exp. (S8), we get
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Integrating Eqs. (S9), we get
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Eqs. (S10) and Eqs. (11) are simplified as Eqs. (3) and Eqs. (4).




