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S1 Analysis of Contact Region and Microfiber Shape
To analyze the wetting region between the droplet and the fiber, we begin by thresholding the image to black and white in MATLAB.
The bounds of the wetting region are inputted manually, and subsequently, the contour of this region is detected. As such, we can
extract the arc length of the contact region `. For several fiber radii, we plot the data for ` as a function of droplet radius in Fig. S1(a).
A solid line passing through the origin is drawn alongside the data. The line describes the low-R data very well, demonstrating that the
empirical scaling ` ∝ R in the low-φ limit is valid. The data begins to deviate from this scaling when φ & 15◦.

To validate our assumption that d ∝ r, we measure the length of the meniscus region from the images for several fiber radii with R
held roughly constant. The results of this analysis are displayed in Fig. S1(b), which shows that d increases with r. A solid line passing
through the origin is drawn to show that the data is consistent with the assumed scaling d ∝ r. For a given fiber, d is not found to depend
on R.

We may also fit the central part of this wetting region to a circle to extract Rf. In these fits, we exclude the region nearest to where
the fiber exits contact with the liquid, as the fiber in this region is observed to be changing curvature towards becoming straight. A
sample fit is shown in Fig. S2, where the blue region corresponds to the contour detected through image analysis, and the red circle is
the fit to that data. We see that the central region of the fiber assumes a curvature of Rf > R.

S2 Energetic Considerations of the Winding Criterion
As outlined by Roman and Bico1, the winding threshold can be predicted from simple energetic considerations. The transition can be
explained considering a two-state model where a fiber and a droplet are either in isolation or in the wound state. Upon winding, the
surface energy of the system is reduced due to contact between the droplet and the fiber by an amount −2γβ r per unit length, where β

is a prefactor which depends on the details of the wetting geometry. Note that since we are in the regime r << R, the droplet remains
nearly spherical after being wound, and any change in surface energy due to a global change in shape of the droplet is neglible (as
will be demonstrated in the next section). The energetic penalty associated with winding around the droplet is an increase in bending
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Fig. S1 (a) The arc length of the wetted contact region between droplet and fiber as a function of droplet radius. The solid line is a straight line passing
through the origin to demonstrate that ` ∝ R is valid in the initial regime. (b) The meniscus size as a function of fiber radius. The solid line is a straight
line passing through the origin to demonstrate that d ∝ r is consistent with the data.
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Fig. S2 A fiber being deformed by a droplet. The contour of the central region of the fiber in contact with the droplet is detected through image analysis
(blue) and fit to a circle (red circle).

energy of the fiber given by B/2R2 per unit length, where B = πEr4/4 is the bending modulus of the fiber. Thus, the total energy change
upon winding is:

∆E =−2γβ r+
πEr4

8R2 . (S1)

Winding occurs when it lowers the free energy of the system, which results in the winding criterion:

R > αLBC , (S2)

where α =
√

π/16β . To attain a prediction for β , we must consider the microscopic wetting geometry between the fiber and the droplet.
Since r << R, we describe the droplet as an infinite bath and the equilibrium wetting is attained in the same way as a cylinder on the
surface of a liquid bath, where the liquid surface is flat and Young’s law is satisfied. Overall, there is a loss of liquid-vapour and solid-
vapour interface in favour of a gain of solid-liquid interface. Considering this microscopic picture, we find β = sinθy +(π − θy)cosθy,
where θy is the Young’s angle of the liquid on the solid.

As explained in the main manuscript, for SIS we make the qualitative observation that the bending cost of the fiber not in contact
with the droplet is roughly equal in magnitude to the bending cost of the fiber being wet by the droplet. Thus, the bending cost upon
winding is now twice as large πEr4

4R2 whereas the gain in surface energy, −2γβ r, is unchanged. Ensuring a reduction in the total energy
upon winding now yields α =

√
π/8β .

S3 Global Surface Energy Change Upon Winding
When considering the free-energy change upon the fiber winding the droplet, we only considered bending energy and wetting energy
between the fiber and the droplet. In doing so, we ignored any global changes in area as the droplet assumes a lenticular shape. To
justify this assumption, we must first examine the resultant lenticular shape which is depicted in Fig. S3 but was first discussed in 1.
As seen in Fig. S3(a), if we denote the radius of the initial droplet as R0, then the radius at the equator of the lens will be denoted R,
where in general R > R0 to conserve volume. The radius of curvature of the spherical caps composing the lens will be denoted RL. In
Fig. S3(b), we draw the microscopic picture of the wetting between the liquid and the fiber in the wound state. The circular shape of
the beam is maintained as a result of a distribution of capillary forces: contact line forces γ and Laplace pressure PL. Young’s angle is
satisfied between the solid and the liquid.

S3.1 The Lens Configuration
The lens configuration can be described through a force balance on the fiber. The net liquid force acting inwards per unit length is:

Fnet,γ = 2γsinψ − 2γ

RL

(
2rsin(ψ +θy)

)
, (S3)

where ψ is denoted in Fig. S3. We can use the spherical cap identity R/RL = cosψ to get:
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Fig. S3 (a) A droplet of initial size R0 becomes a lens of equatorial radius R upon being wound by a fiber. The lens is composed of two spherical caps
which intersect the equator at an angle π/2−ψ. (b) A zoomed-in cross-sectional view of the dashed rectangular area in (a). PL denotes the Laplace
pressure and γ indicates contact line surface tension forces.

Fnet,γ = 2γsinψ − 4γr
R

(
cosψ sin(ψ +θy)

)
. (S4)

To maintain a circular beam, the net force per unit length acting radially inwards must be 3Brod/R3 2. Thus, the lens configuration must
satisfy:

3πEr4

4R3 = 2γsinψ − 4γr
R

(
cosψ sin(ψ +θy)

)
. (S5)

In our experiments, we observe that the lens configuration appears almost completely spherical, i.e. ψ << 1. Thus, to proceed
further, we make the assumption ψ << 1, and will soon show that this is valid in our case. To first order, Eq. (S6) becomes:

3πEr4

4R3 ≈ 2γψ − 4γr
R

(
ψcosθy + sinθy

)
. (S6)

We can now isolate for ψ to arrive at:

ψ ≈ r
R

3πL2
BC

8R2 +2sinθy

1− 2r
R cosθy

∝
r
R
. (S7)

Therefore, we see that ψ scales as r/R. Since r << R in our experiments and LBC/R is on the order of unity, ψ << 1 is a valid assumption.

S3.2 Volume Conservation

Now we consider the global change in area of a droplet becoming a lens, as depicted in Fig. S3(a). We will limit our discussion to
ψ << 1. To conserve volume, it follows that R will only be slightly larger than R0, i.e. R = R0(1+δ ), where δ << 1. Thus, the statement
of volume conservation from a spherical droplet to the two spherical caps composing the lens reads:

4
3

πR3
0 =

2
3

π

( R
cosψ

)3(
2−3sinψ + sin3

ψ
)
. (S8)

If we expand the right-hand side to second-order in δ and ψ we find δ ≈ ψ/2.
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S3.3 Change in Area
The change in area (∆A ) of the droplet can be written as:

∆A = 2πR2
(

1+ tan2(π/2−ψ

2
))

−4πR2
0 . (S9)

We expand ∆A to second-order in ψ and δ , because as we will see, the first-order term will vanish:

∆A ≈ 2πR2
0(1+δ )2(2−2ψ +2ψ

2)−4πR2
0 (S10)

∆A ≈ 4πR2
0(1+2δ −ψ +ψ

2 −2δψ +δ
2)−4πR2

0 . (S11)

The zeroth-order terms cancel, and inserting δ ≈ ψ/2, we find the first-order terms vanish as well, and we are left with:

∆A ≈ πR2
0ψ

2 = π

(
R

1+δ

)2
ψ

2 ≈ πR2
ψ

2 , (S12)

up to second-order in ψ. Since we know that ψ ∝ r/R, we see that ∆A ∝ R2(r/R)2 ∼ r2. Therefore the change in surface energy from
global area changes is ∆EA ∼ γr2. However, the change in surface energy due to wetting is ∆Ew = −2γrβ (2πR) ∼ rR for one complete
wind, where β depends on the microscopic wetting picture and is of order unity. Since r << R, we see that ∆Ew ∼ rR >> ∆EA ∼ r2, and
we can neglect any global changes in area.
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