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SI 1 Determining effective particle dimensions
In order to compare experimental data with simulations, we de-
termine first the effective dimensions of the particles that account
for the thin electric double layer. The colloidal particles used act
as nearly hard particles, with a dimension slightly larger than that
derived from TEM images. First, to determine the effective diam-
eter of the spheres, σeff = σtem+λs, we mapped the equation of
state as obtained by integrating the density profile of the top part
of the sediment (that contained only spheres) to the Carnahan-
Starling (CS) equation of state (see Supplementary Fig. S7a).

βP/ρsph =
1 + φ+ φ2 − φ3

(1− φ)3
,

where ρsph is the number density of the spheres, β = 1/kBT ,
and φ = ρvsph, with vsph = 1

6
πσ3

eff the effective volume of one
spherical particle. The pressure at height z in the sample was cal-
culated using P (z) = msphg

∫ h
z
ρsph(z)dz, with msph the buoy-

ant mass of the particles (calculated from TEM dimensions), g the
gravitational acceleration constant, z the height in the sediment
and h height of the sampled volume, where we made sure that
the particle density vanished at h. The best fit with the CS equa-
tion of state was obtained by taking λs = 80 nm for the volume
fractions φ < 0.2 or pressures βP/ρsph < 2.5. The equation of
state as obtained from experiments becomes unphysical at higher
pressures (i.e., lower height z in the sediment) as the density of
rods cannot be neglected at lower z. Next, in order to determine
the effective dimensions of the rods, Deff = Dtem + λr and Leff
= Ltem + λr, we mapped the jump in the global nematic order
parameter S at the isotropic nematic transition of an equilibrated
sample containing pure hard rods to results obtained from NPT

simulations of only rods (see Supplementary Fig. S7b and dis-
cussion below). Experimental data with λr = 120 nm matched
best with data obtained from simulations. This resulted in the
following effective dimensions for the R2 rods: Deff = 707 nm,
Leff = 3711 nm, (L/D)eff = 5.25, Deff = 1.52σeff . We did
not use the equation of state of rods to determine the effective
dimensions of the rods as the equation of state is more sensitive
to polydispersity.
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For both procedures to find the effective dimensions, one
should realize that discrepancies can arise due to polydispersity,
which also can cause size segregation of particles with height.

SI 2 Order parameters for colloidal rods

To distinguish between the isotropic and the different liquid crys-
talline phases we rely on global and local order parameters. The
global nematic order parameter is obtained by diagonalizing the
nematic order parameter tensor

Qαβ =
1

N

N∑
i=1

[
3

2
uiαuiβ −

1

2
δαβ

]
,

where uiα is the α-component of the unit vector describing the
orientation of the long axis of the rod i, N is the number of rods
in the slab, and δαβ the Kronecker delta. The global nematic
order parameter S is defined as the largest eigenvalue of Q and
the corresponding eigenvector is the nematic director n. S ranges
from −0.5 to 1. In addition, we define as introduced in1 the local
nematic order parameter Si of particle i as

Si =
1

ni

ni∑
j=1

[
3

2
(ui · uj)2 −

1

2

]
,

with ni the number of neighbors of particle i and where two par-
ticles are considered neighbors if ρij < 1.0D, with ρij the min-
imum surface-to-surface distance. We take D = Deff in case of
the experiments, whereas D equals the hard-core diameter of the
spherocylinders in case of the simulations. Si also ranges from
−0.5 (particle transverse to its neighbors) to 1 (perfect align-
ment).
The global smectic order can be probed by calculating the follow-
ing order parameter2–5:

τ = max
l

∣∣∣∣∣
N∑
j=1

e2πirj ·n/l

∣∣∣∣∣ ,
where the value of l that maximizes the above expression is iden-
tified as the layer spacing d. However, due to the limited statistics
(small number of layers within confocal snapshot) and fluctua-
tions in their positions, we obtained values of τ , smaller than
what one would expect after visual inspection of the sample, and
a rather noisy trend of τ as a function of height.
We therefore introduce a novel order parameter to quantify the
local tendency of the particles to form (single) smectic or crys-
talline layers and we use it as a local smectic order parameter.

1–12 | 1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2016



We first calculate the shift hij of the center of mass of particle i
with respect to its neighbors j projected on a common axis (we
pick the main orientation ui of particle i but another direction
such as the local nematic director would give similar results). We
then normalize it and define:

∆i = 1− 1

mi

mi∑
j=1

hij
rcut

= 1−

(
1

mi

mi∑
j=1

rij
rcut

· ui

)
,

where rcut = (Li + D)/2 and mi is the number of neighbors
of particle i satisfying rij < rcut, with rij the center-to-center
distance between the rods. ∆i = 1 corresponds to the orthogo-
nality condition between rij and the common axis (in this case
ui). However, such a condition can be obtained both for perfectly
aligned rods and in the case of transverse order (Supplementary
Fig. S8). Notice that transverse rods are anyway expected in the
smectic phase due to thermal fluctuations but we want to consider
them as defects in a perfectly layered structure. In order to dis-
criminate between these two configurations ∆i is then multiplied
by Si. In conclusion, we define the local smectic order parameter
as

τi ≡ Si∆i

Using τi we are able to distinguish (locally) the smectic order
(high values of τi) from the isotropic, nematic, as well as colum-
nar order for which we expect low values of τi. Note that the
neighbor definition in ∆i and τi is different and that the pre-
cise threshold value of the cut-off distance yields some degree of
arbitrariness in the use of these order parameters to define the
different phases. Furthermore, other approaches to define a local
smectic order parameter are in principle possible, for example by
considering.

max
l

∣∣∣∣∣
ni∑
j=1

e2πirij ·ui/l

∣∣∣∣∣ ,
with rij the center-to-center distance between particle i and its
neighbors j, defined as particles that have a minimum surface-
to-surface distance ρij < 1.0D (as for Si). However, to avoid
misidentifications a large number of neighbors ni are needed,
otherwise even particles in the isotropic phase could have a large
value of such an order parameter. When imposing this kind of
threshold on the number of neighbors, we found similar results
as using τi ≡ Si∆i.

We expect that future work on order parameters for anisotropic
particles based on the local environment will refine the family
of quantities needed to discriminate between the different
liquid crystal phases, in analogy with what happened to the
bond orientational order parameter for crystal symmetries of
spherical particles 6,7. Such order parameters will be central in
experimental studies on e.g. nucleation, glass transition and
defects re-arrangement. Nevertheless, the order parameter
τi ≡ Si∆i introduced here is suitable for the current purpose,
i.e., the identification of the smectic order in absence of a large
number of smectic layers.

SI 3 Determining different phases in the bulk phase
diagram from experimental data

In order to distinguish between the different phases in experimen-
tal data, we rely on the local order parameters Si and τi for each
particle i, as described above. Notice that the analysis of the local
order parameters was based on the lengths Li of the rods ob-
tained by the particle tracking procedure, where the end-to-end
length is defined as L = Li + D, therefore are based on fluores-
cent shells present inside the rods. Subsequently, we determine
the averaged values 〈Si〉 and 〈τi〉 by averaging over all particles in
a certain slab in the sediment. The choice of the threshold values
of the local order parameters at which we define the transition
is admittedly somewhat arbitrary and can influence the identifi-
cation of the different phases. Therefore, we chose values close
to points of inflection observed in the trend of the averaged local
order parameters (see Supplementary Fig. S9). We used the fol-
lowing threshold values to determine in the experimental system
the different phases; isotropic (I) if 〈Si〉 < 0.5 and 〈τi〉 < 0.35,
nematic (N) if 〈Si〉 > 0.5 and 〈τi〉 < 0.35, Sm2 if 〈Si〉 > 0.5

and 〈τi〉 > 0.35. Analysis based on global order parameters is
also in principle possible but usually more noisy due to the need
to collect a larger amount of data. In particular the traditional
global smectic order parameter, τ is sensitive to fluctuations of
the layers and defects in and between layers.

2 | 1–12



SI 4 Estimating the bulk phase diagram from com-
puter simulations

The colloidal silica spheres and rods are modeled as hard spheres
of diameter σ and hard spherocylinders of (cylinder) length Lcyl
and diameter D, respectively. Where the experimental end-to-
end length L is defined as L = Lcyl + D. Particles interact via
a purely excluded-volume pair potential: U = ∞ if two particles
overlap, U = 0 otherwise. We first perform Monte Carlo (MC)
simulations in the NPT ensemble of 1600 hard spherocylinders
to map the behaviour of the experimental (single-component)
system of silica rods onto hard particle behaviour, i.e., identify
the effective dimensions of the silica rods (see Supplementary
Fig. S7 and discussion above). After this analysis, we simulate
Ntot = Nsph +Nrods = 3125 hard spheres and hard spherocylin-
ders (Lcyl = 6.46σ, D = 1.52σ, Lcyl/D ∼ 4.25) in the NPT
ensemble with various composition xsph = Nsph/Ntot. Each sim-
ulation consists of several million of MC steps, where one step is
defined as Ntot moves randomly chosen from sphere translation,
rod translation, rod rotation, and either isotropic or anisotropic
change of the simulation box volume. Initial configurations at a
given composition x are obtained from an equilibrated configura-
tion at lower x by replacing an appropriate number of rods with
spheres. Each state point has been characterized by several order
parameters, some of which have been introduced before and used
for the experimental data as well.

According to theoretical predictions based on a second-virial
density functional theory applied to a rod-sphere mixture with
similar sizes (Lcyl/σ = 7, D = σ), we expect stable isotropic
(I), nematic (N) and binary-smectic (Sm2) liquid crystal phases 8.
In our study, we do not take into account the possible crystalline
(hexagonal) order, neither within a single layer nor between dif-
ferent layers, and therefore we do not distinguish between (bi-
nary) Smectic-A and (binary) Smectic-B and possible (binary)
crystal phases, even though we observe hexagonal arrangements
of rods, both in experiments and in simulations. Since for the
short rods considered here both the I-N and the N-Sm transitions
are weakly first order 9, and a particularly broad I-Sm2 coexis-
tence region is expected when such rods are mixed with hard
spheres8, an accurate identification of the phase boundaries is
clearly challenging. Nevertheless, we use both global and local or-
der parameters to discriminate between the different liquid crys-
talline structures for a large number of state points (for which
xsph and P are imposed) and trace the state diagram of rod-
sphere mixtures for which experiments have been performed (see
Supplementary Fig. S10a). In particular, in the isotropic phase
(see Supplementary Fig. S10b) all the order parameters vanish.
The nematic phase (see Supplementary Fig. S10c) is character-
ized by a high value of the nematic order parameter (both the
global S and the local Si as can be seen from the color coding
of the rods) but not of the smectic ones, since neither the rods
nor the spheres form layers. We observe that the I-N shifts to-
wards higher pressure upon increasing composition xsph until a
point (around xsph ' 0.6) beyond which the nematic phase is no
longer stable. In the Sm2 phase (see Supplementary Fig. S10d)
the rods locally form layers resulting in a large value of the local

smectic order parameter τi as shown by the color coding. The
structure is clearly long-range which is also confirmed by the (or-
dinary) global smectic order parameter τ . The binary character
of the smectic phase is confirmed by the fact that the spheres are
also arranged in layers, as clearly evident from the snapshot in
Supplementary Fig. S10(d). Such layering can also be quantified
by a global smectic order parameter for the spheres, calculated
along the nematic director of the rods n (that coincides with the
layer normal), in full analogy with the one for the rods (see sec-
tion on order parameters):

τsph = max
l

∣∣∣∣∣
N∑
j=1

e2πirj ·n/l

∣∣∣∣∣ .
Both the values of τsph and the associated spacing between layers
of spheres are consistent with the values of τ (for only rods) and
the spacing between the smectic layers of the rods, as expected
for the Sm2 phase. However, for small compositions xsph and
large pressures P (see Supplementary Fig. S10e-f), the spheres
do not form layers anymore but rather are expelled from the lay-
ers of rods and organize themselves into linear aggregates. This
structure is likely not a novel thermodynamically stable phase
but rather should be considered as an indication of the under-
lying phase separation into a sphere-rich isotropic phase and
rod-rich (binary) smectic phase (or probably a crystal phase of
rods at sufficiently high pressures, as evident from Supplementary
Fig. S10e). Indeed, since the system cannot really demix because
of the finite size nature of the simulations, the spheres have to
act as substitutes of rods to minimize the overall system free vol-
ume. It is important to remark that this columnar arrangement
of spheres is not related to the columnar phase observed in the
mixture of colloidal spheres and fd-viruses10, since in that case
the columns of spheres are perpendicular to the direction of the
layers of the rods. The possibility of forming that structure with
only hard-core interactions and its thermodynamic stability are
still open questions.
The transition from a stable Sm2 phase to this kinetically trapped
structure, that is evidence of I-Sm2 demixing, is often associated
with a drop in τsph as reported in the Supplementary Fig. S11f.
As can be seen from the Supplementary Fig. S10f, the formation
of columns of spheres occurs also when most of the spheres are
still arranged in layers, therefore yielding to a somehow arbitrary
definition of the upper bound of the Sm2 stability region.
For larger values of xsph, the I-Sm2 demixing is more evident as
can be appreciated from Supplementary Fig. S10g-h in which a
number of smectic layers (depending on xsph) is in coexistence
with an isotropic phase rich in spheres. This behaviour is also
captured by the probability distribution of rods having a certain
value of the local smectic order parameter τi (some examples
are reported in the Supplementary Fig. S11a). Indeed, for state
points inside the I-Sm2 regions two populations of particles (one
with |τi| ∼ 0 and one with τi bigger than a given threshold) are
often evident. However, extracting the equilibrium composition
of the two coexisting phases based on the amount of particles in
the two populations seemed to be not an easy task due to the
limited system size of our simulations and the sensitivity on the
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choice of the threshold value. By examining the state diagram
obtained, we notice that compositions around xsph = 0.6 show a
peculiar re-entrant sequence upon increasing the pressure, going
from an isotropic to I-Sm2 region to a pure Sm2 to a demixed re-
gion again. Representative snapshots at this composition, along
with a quantitative analysis, are reported in the Supplementary
Fig. S11. Finally, we notice that the topology of the phase di-
agram here reported is consistent with theoretical predictions8,
including the re-entrant behaviour of the Sm2 region.

We wish to remark here that simulations in theNPT ensemble,
in which the overall composition xsph and pressure P are kept
fixed, is not always the most convenient statistical ensemble to
study broad demixing transitions as huge system sizes and long
simulation times are need to obtain phase coexistence between
different thermodynamic states. Indeed, a standard procedure to
trace the phase diagram of a mixture would require simulations
in the grand-canonical ensemble that are, however, not feasible
for short rods (only the insertion/removal of the small spheres
would be possible). Recently, the use of hard walls in computer
simulations of rod-sphere systems composed of similar number of
particles as used here and similar particle dimensions, have been
employed as an alternative to determine slightly more accurately
the variation in composition of the isotropic-nematic transition
but limiting the study to a small region in the xsph − P plane11.
However, at the densities where the binary smectic phase is ob-
served, the effect of walls would be still quite pronounced for
ordinary system sizes. Ultimately, an accurate study of the equi-
librium phase behaviour should be based on (computationally ex-
pensive) free-energy calculations, but this is beyond the scope of
the present work.

SI 5 Supplemental Figures

Fig. S1 TEM images of particles used. (a) R2 rods, with L = 3.6 µm
(δL ' 18%), D = 0.59 µm (δD ' 10%), L/D = 6.1. (b) R1 rods,
with L = 2.9 µm (δL ' 9%), D = 0.51 µm (δD ' 9%), L/D = 5.6.
(c) Spheres, with σ = 385 nm (δσ ' 9%)

Fig. S2 Schematic representation of the electric sample cell. Schematic
representation of the used sample cell for the alignment with an ac-
electric field, field perpendicular to gravity.

Fig. S3 Schematic representation of sample cell. Schematic representa-
tion of the used sample cell to study the sedimentation profile of mixtures
of colloidal rods and spheres with 3D confocal microscopy.
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Fig. S4 Confocal image of an aligned Sm2-phase using an AC-electric field. Confocal image (738 µm × 492 µm) of obtained Sm2-phase with an
ac-electric field switched on during sedimentation (15 V mm−1). The image consists of 6 images stitched together to form 1 image.
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Fig. S5 Confocal image of an aligned Sm2-phase using an AC-electric field. Top right confocal image (246 µm × 246 µm) in Supplementary Fig. S4.
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Fig. S6 g(r) of spheres inside Sm2-phase. (a-b) Computer drawn images from fitted particles of part of a confocal data stack of a sediment of rods
and spheres, showing the Sm2-phase (a) depicted both rods and spheres (b) depicted only spheres. (c) g(r) of spheres inside the Sm2-phase, data
taken from (b). We observe a peak at 11.6σ, with σ being the bare diameter of the spheres. This corresponds to a smectic layer spacing of 1.20Leff ,
with Leff being the average effective length of the rods. From simulation12 of only rods with Lcyl/D = 5 (L/D = 6) a spacing of 1.048 is expected.
Kuijk et al experimentally found a spacing between 1.1 and 1.2 Leff for silica rods13. The effective sphere diameter σeff is 0.13Leff .
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dashed lines and squares. Experimental data with rods Deff = Dtem + λr, with λ = 120 nm match best with data from simulations. This resulted
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Fig. S8 Schematic of the smectic local order parameter.
Schematic of the smectic local order parameter τi = Si ·∆i
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Fig. S9 Experimental State Diagram and Order Parameters. (a) Experimental state diagram (as Fig. 4 of the main text), using the following thresholds:
isotropic (I) if 〈Si〉 < 0.5 and 〈τi〉 < 0.35 (black circles), nematic (N) if 〈Si〉 > 0.5 and 〈τi〉 < 0.35 (green diamonds), Sm2 if 〈Si〉 > 0.5

and 〈τi〉 > 0.35 (red squares). (b) Different choice of the threshold values for the local smectic order parameter τi, isotropic (I) if 〈Si〉 < 0.5 and
〈τi〉 < 0.4, nematic (N) if 〈Si〉 > 0.5 and τi < 0.4, Sm2 if 〈Si〉 > 0.5 and 〈τi〉 > 0.4. (c) Averaged local nematic order parameter 〈Si〉 as a
function of reduced pressure βPD3

eff for different equilibrated sediments. (d) Averaged local smectic order parameter 〈τi〉 for different equilibrated
sediments.
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the Sm2 region, even if it is admittedly somehow arbitrary. In panel (f) the smectic order parameter associated to layers of spheres τsph (see text for
the definition) is plotted against the pressure for different composition. The different arrangement of spheres, either in layers or in columns/random
aggregates (these are indications of I-Sm2 demixing) is associated to a large or small value of τsph, respectively.
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Table S1 Properties of particles used in this paper. Here, L is the end-to-end length of the rods, D is the diameter of the particles, δ is the polydispersity
of the particles and lg is the gravitational length of the particle based upon a 85 wt% glycerol-water mixture and the particle dimensions measured by
TEM. The aspect ratio for simulations is defined as Lcyl/D = (L/D)eff − 1.

Particle dimensions from TEM Effective particle dimensions

L δL D δD L/D lg Leff Deff (L/D)eff

nm % nm % µm nm nm

R2 3591 18 587 10 6.1 0.64 3711 707 5.25
R1 2860 9 510 9 5.6 1.06 2980 630 4.75

Spheres 385 9 17.65 465
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