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Here we summarize an effective medium calculation by the method of Maxwell1, 2 to 

determine the effective diffusivity for a composite of dilute, monodisperse spheres, , with a 𝐷𝜙

core/shell structure embedded at random in a matrix. The core has volume fraction , is 𝜙𝑃

impermeable and is of diameter . The attached shell has thickness  and volume fraction  (see 𝑑 𝛿 𝜙𝛿

Figure S1). The matrix-penetrant pair has (constant, bulk) diffusion coefficient  while the 𝐷𝐵

shell-penetrant pair has (constant) diffusion coefficient . The ratio of shell partition coefficient 𝐷𝛿

to matrix partition coefficient is . Below appears an effective partition coefficient for the 
𝐾𝛿 𝐾𝐵

composite, . From ref. 2  is defined according to what concentration is used in the Fick’s 𝐾𝜙 𝐾𝜙

first law flux for the composite. Using penetrant mass per unit total volume leads to

(S1) where𝐾𝜙 = (1 ‒ 𝜙𝑃 ‒ 𝜙𝛿)𝐾𝐵 + 𝜙𝛿𝐾𝛿

(S2)
𝜙𝛿 = [(1 + 2𝛿

𝑑 )3 ‒ 1]𝜙𝑃
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Denote by  and  respectively, the steady concentration field in the matrix surrounding, 𝜓 𝜆

and in the shell of, an isolated core/shell particle under a constant macroscopic concentration 

drop along one direction, say . These each obey Laplace’s equation, which is, for example 𝑧

; (S3)

∂
∂𝑟

𝑟2
∂
∂𝑟

𝜓+
∂
∂𝜂
(1 ‒ 𝜂2) ∂

∂𝜂
𝜓= 0

𝜂= 𝑐𝑜𝑠𝜃

for , in a spherical coordinate system with the particle core centered on the origin and the 𝜓

associated  axis pointing along the direction of the macroscopic gradient (see Figure S1). The 𝑧

solutions sought for  and  are finite for  and obey the boundary conditions 𝜓 𝜆 𝜂=± 1

, (S4)
lim
𝑟→∞

∂
∂𝑟

𝜓= 𝐺𝜂

, (S5)
� ∂∂𝑟

𝜓|𝑟= 0.5𝑑+ 𝛿 =
𝐷𝛿

𝐷𝐵
� ∂∂𝑟

𝜆|𝑟= 0.5𝑑+ 𝛿

, (S6)
�𝐾𝛿

𝐾𝐵
𝜓|𝑟= 0.5𝑑+ 𝛿 = �𝜆|𝑟= 0.5𝑑+ 𝛿

 . (S7)� ∂∂𝑟
𝜆|𝑟= 0.5𝑑 = 0

Eqns. S4-S7 express, respectively, that the far-field gradient match the imposed gradient , that 𝐺

the normal components of the penetrant flux out from the shell and into the matrix match at the 

shell/matrix boundary, that the penetrant concentration partitions according to  at the 
𝐾𝛿 𝐾𝐵

shell/matrix boundary, and that the core is impermeable. We seek eigen-function expansions  𝜓

and  in terms of the Legendre polynomials  and so apply the transform𝜆 Φ𝑛(𝜂)

; (S8)
(Ψ𝑛(𝑟)
Λ𝑛(𝑟))≡

1

∫
‒ 1

Φ𝑛(𝜂)(𝜓𝑛(𝑟,𝜂)
𝜆𝑛(𝑟,𝜂))𝑑𝜂

𝑛= 0,1,2,…

giving the equidimensional equation for the Ψ𝑛(𝑟)
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(S9)

∂
∂𝑟

𝑟2
∂
∂𝑟

Ψ𝑛(𝑟) ‒ 𝑛(𝑛+ 1)Ψ𝑛(𝑟) = 0

and an analogous equation for the . The homogeneous solutions are Λ𝑛(𝑟)

 and (S10)Ψ𝑛(𝑟) = 𝐴𝑛𝑟𝑛 + 𝐵𝑛𝑟 ‒ (𝑛+ 1)

.Λ𝑛(𝑟) = 𝐶𝑛𝑟𝑛 + 𝐷𝑛𝑟 ‒ (𝑛+ 1)

Applying the transform Eq. S8 to the boundary conditions Eqs. S4-S7 and using the results to 

resolve the constants in Eq. S10 leads to: 

 arbitrary constant, (S11)𝐴0 =

,
𝐴1 =

2
3
𝐺

 for ,𝐴𝑛 = 0 𝑛 ≥ 2

 0,𝐵0 =

,

𝐵1 =
2
3
𝐺(𝑑2 + 𝛿)3[(1 ‒

𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (12 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3

(2 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (1 ‒

𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3]
 for ,𝐵𝑛 = 0 𝑛 ≥ 2

 arbitrary constant,𝐶0 =

,

𝐶1 =
2
3

𝐾𝛿

𝐾𝐵
𝐺[ 3

(2 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (1 ‒

𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3]
 for ,𝐶𝑛 = 0 𝑛 ≥ 2

 0,𝐷0 =

,
𝐷1 =

1
16

𝐶1𝑑
3

 for ,𝐷𝑛 = 0 𝑛 ≥ 2
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Consequently the concentration field in the matrix is

(S12)𝜓𝑛(𝑟,𝜂) = 𝑐∞(𝑟,𝜂) + 𝑐0(𝑟,𝜂)

where  means the concentration field in the absence of the particle, i.e. the undisturbed 𝑐∞(𝑟,𝜂)

field

(S13)𝑐∞(𝑟,𝜂) = 𝐴+ 𝐺𝑟𝜂= 𝐴+ 𝑟·∇𝑐∞(𝑟)

where  is an arbitrary constant, and  means the disturbance due to a single core-shell 𝐴 𝑐0(𝑟,𝜂)

particle located at the origin

(S14)

𝑐0(𝑟,𝜂) = (𝑑2 + 𝛿)3[(1 ‒
𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (12 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3

(2 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (1 ‒

𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3] 1𝑟3𝑟·∇𝑐∞(𝑟)

So, the far-field perturbation  from a single core-shell particle located at  is 𝑐0(𝑟) 𝑟'

(S15)
𝑐0(𝑟) =

𝑑3

8
𝛽

𝑟·∇𝑐∞

|𝑟 ‒ 𝑟'|3

with 

(S16)

𝛽= (1 + 2𝛿
𝑑 )3[(1 ‒

𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (12 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3

(2 + 𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
) + (1 ‒

𝐷𝛿

𝐷𝐵

𝐾𝛿

𝐾𝐵
)( 𝑑

𝑑+ 2𝛿)3]
Maxwell’s effective medium method involves determining the far-field effect of a cluster of  𝑁

particles confined in a spherical test volume of radius  centered on the origin. Superposition 𝑅

leads to

. (S17)
𝑐0(𝑟) =∑

𝑉

𝑑3

8
𝛽

𝑟·∇𝑐∞

|𝑟 ‒ 𝑟'|3
≃ 𝜙𝑃𝑅3𝛽

𝑟·∇𝑐∞

𝑟3
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This must match the far field disturbance by a sphere on the origin of radius  with effective 𝑅

properties  and  , namely2𝐷𝜙 𝐾𝜙

 (S18)
𝑐0(𝑟) = 𝑅3𝛽𝜙

𝑟·∇𝑐∞

𝑟3

with

(S19)
𝛽𝜙 =

𝐷𝐵 ‒ 𝐷𝜙𝐾𝜙

2𝐷𝐵 + 𝐷𝜙𝐾𝜙

Consequently

(S20)𝜙𝑃𝛽= 𝛽𝜙

defines . Keep in mind that this calculation does NOT account for the interaction of particles 𝐷𝜙

in the test volume on the far field disturbance and so is strictly valid only in the dilute limit

(S21)
𝜙𝑃(1 + 2𝛿

𝑑 )3 ≪ 1

It is therefore convenient to express  as a power series in . For the simple case 
𝐷𝛿 𝐷𝐵 𝜙𝑃

 and  using Taylor’s expansion, this turns out to be
𝐾𝛿 𝐾𝐵 = 1 𝐾𝜙 = 1 ‒ 𝜙𝑃

. (S22)

𝐷𝜙

𝐷𝐵
≃ 1 + (1 ‒ 3𝛽)𝜙𝑃 + 𝑂(𝜙𝑃

2)
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Material B

Core/Shell Inclusion

Gradient = 

Figure S1. Coordinate system and geometry of system theoretically modeled above.
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