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I. FREE ENERGY IN THE CONTINUUM
THEORY

Consider a general one-dimensional system whose en-
ergy is treated to quadratic order. The continuum energy
takes the form

UCT(w(x))=
1

2
〈w(x)|L|w(x)〉≡ 1

2L

∫ L

0

w(x)Lw(x) dx ,

where L is a self-adjoint real differential operator. Our
convention is that the eigenvalues of L are of energy di-
mensions, and thus w(x) is dimensionless. We work in the
eigenbasis of L, which we denote by wq1(x), . . . , wqN (x).
These functions are orthonormal, i.e.

1

L

∫ L

0

wqwq′dx = δqq′ , and

〈wq|L|wq′〉 = λqδqq′ ,

(S1)

where λq is the eigenvalue associated with wq. The
eigenmodes span the functional space and a general con-
figuration w(x) can be written as w(x) =

∑
q aqwq(x)

where aq ≡ 〈w(x)|wq〉. The energy is thus written as
UCT = 1

2

∑
q λq a

2
q, and the partition function, defined in

Eq. (26) of the main text, reads

ZCT =

∫
Dw e−β〈w|L|w〉Θ

(
ε− w(L)

)
(S2)

=

∫
dNaq exp

[
−β
∑
q

1
2λqa

2
q

]
Θ
(
ε−

∑
q

aqwq(L)
)
.

This is a multivariate Gaussian integral over a half-space.
In Sec. IV of this file we derive a general formula for
integrals of this type (Eq. (S25)). Applying this formula
to Eq. (S2) yields

ZCT =
1

2

(
(2π)N

βN detL

)1/2
(

1 + erf

[
ε

√
βκh
`CT

])
(S3)

`CT ≡ 2L
∑
q

(
wq(L)

qL

)2

. (S4)

where erf(·) is the standard error function and the rela-
tion λq = κhLq

2 was used. detL is defined as
∏
q λq. The

factor 1
2 (2π)N/2 is of no physical importance and will be

omitted in what follows.
Note that here we take into account exactly N contin-

uum modes, which is basically a choice of an ultraviolet
cutoff on q. The results presented here do not depend
qualitatively on the choice of the ultraviolet cutoff, as
long as the number of modes scales with N , which is
anyway a trivial requirement from any reasonable cutoff
scheme.

The free energy is thus given by

FCT ≡ −kBT logZCT = FCT

uc + FCT

ε ,

FCT

uc ≡ 1
2kBT log

(
βN detL

)
,

FCT

ε ≡ − 1
2kBT log

(
1 + erf

[
ε

√
βκh
`CT

])
.

(S5)

We now turn to calculate detL, which is done by ex-
plicit calculation of the eigenmodes. Since the wavenum-
bers are given approximately by Eqs. (19)-(20) of the
main text, the calculation of FCT is straightforward.
The eigenvalue associated with the wavenumber q is
λq=Lκh q

2 and thus

detL =
∏
q

λq =
∏
n

κhLq
2
n =

(κh
L

)N
C2N (N !)2 .

This immediately leads to

FCT =
1

2
kBT log

[
βN detL

]
= (S6)

NkBT

[
1
2 log

(
βκh
L

)
− log

(
φ∆ + 1− φ

π

)
+

1

N
logN !

]
.

We now apply Stirling’s approximation, which we write
as log(N !) ≈ N log

(
N
e

)
and after some rearrangement

we obtain

FCT ≈NkBT

[
1
2 log

(
βκh
L/N

)

− log (∆φ+ 1− φ) + log
(√

N
π

e

)]
.

(S7)

The free energy of a homogeneous polymer, fCT is imme-
diately obtained by setting φ = 0.

II. FREE ENERGY IN THE DISCRETE
THEORY

Here we present the calculation of the free energy as-
sociated with H(1) in the discrete formalism. We want
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to calculate the partition function

ZDT =

∫ ∞
−∞

dNw e−βU
DT(w)Θ(ε− wN ) , (S8)

with

UDT(w) =

N∑
i=1

1

2
κi

(
wi − wi−1

∆x

)2

∆x . (S9)

Unlike the continuum case described in the previous sec-
tion, here the calculation can be performed without ex-
plicit reference to the eigenmodes. The trick is to use the
non-orthogonal change of variables

yi ≡
√

κi
∆x

(wi − wi−1) , wi =

i∑
j=1

yj

√
∆x

κj
. (S10)

The Jacobian of this transformation is
∏
i

√
κi
∆x =√

detH. With the new variables yi the energy takes the
simple form U = 1

2 ||y||
2. The partition function is thus

ZDT =

√
1

detH

∫ ∞
−∞

dNy e−
β
2 |y|

2

Θ

ε−∑
j

yj

√
∆x

κj

 .

This is a Gaussian integral over a half-space, for which
we derive an explicit formula in Sec. IV of this file
(Eq. (S25)). The result is

ZDT =
1

2

√
(2π)N

βN detH

(
1 + erf

[
ε

√
βκeff

2∆x

])
, (S11)

where we introduced the notation κeff ≡
(∑

κ−1
i

)−1
,

i.e. the effective spring constant of the chain.
Note that this expression holds for an arbitrary choice

of κi, and also that it is invariant to permutations in
the order of the κi’s (since detH is). If we assume κ(x)
has the form described in the main text, i.e. Nφ springs
have a spring constant of κs and N(1− φ) have a spring
constant of κh, we have

κeff =

(
Nφ

κs
+
N(1− φ)

κh

)−1

=
κh/N

∆2φ+ (1− φ)
, (S12)

detH =
∏
i

κi
∆x

=
( κh

∆x

)N
∆−2Nφ . (S13)

Thus, the free energy is

FDT ≡ −kBT logZDT = FDT

i + FDT

ε ,

FDT

uc ≡ 1
2kBT log

(
βN detH

)
= N

2 kBT

[
log

(
βκh
L/N

)
− φ log ∆

]
, (S14)

FCT

ε ≡ − 1
2kBT log

(
1 + erf

[
ε

√
βκh
`DT

])
,

`DT = 2L
(

∆2φ+ (1− φ)
)
. (S15)
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FIG. S1. The spectrum of the SFT operator (dashed lines)
and the discrete operator (solid lines) for the case ξ = L/25
(green) and ξ = 0 (blue) which is discussed in the manuscript.
Inset: The smoothed κ(x) (solid line) and the discrete κi

(points). The parameters used are the same as those of Fig. 1
of the main text, together with ξ = L/25. The shaded regions,
each of width 2ξ, show the region where κ varies.

III. SMOOTH VARIATION OF κ(x)

The continuum eigenmodes of a system with a
smoothly varying κ(x) can be obtained using a straight-
forward shooting method. The Sturm-Liouville problem
associated with L(1), namely

∂

∂x

(
κ(x)

∂w

∂x

)
= λw(x) (S16)

is interpreted as a differential equation which is inte-
grated with the initial conditions w(0)=0 and w′(0)=1.
The equation is integrated up to x = L and the value
w′(L;λ) is obtained as a function of λ. The eigenvalues
are those λ for which w′(L;λ)=0. These are found using
standard root-finding methods.

To explore the effect of the smoothness of κ(x) on the
results, we chose a specific form of smoothing. Instead of
a sharp step function, defined as

Θ(x) =

{
0 x < 0

1 x > 0
, (S17)

we use a hyperbolic tangent function that varies over a
finite lengthscale ξ

Θ(x; ξ) =
1

2

[
1 + tanh

(
2x

ξ

)]
. (S18)

ξ can be significantly larger than the monomeric length-
scale. Equation (S17) in recovered in the limit ξ → 0.
An example of a smoothed κ(x) with ξ=L/25 is shown
in Fig. S1. The computed spectra are also shown and it
is seen that the effect of ξ on the spectrum is small and
the qualitative discrepancies between the continuum and
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discrete theories persist. Moreover, the qualitative dis-
crepancies between the continuum and discrete theories
are independent of ξ, at least as long as ξ�L.

IV. HALF-SPACE GAUSSIAN INTEGRALS

The partition function, defined in Eq. (26) of the main
text, is a multivariate Gaussian integral over a half space.
In this section we calculate such an integral in a general
manner, to be used in calculations of ZDT and ZCT.

We want to calculate the integral

I(A,v) =

∫ ∞
−∞

dNx e−
1
2x

TAxΘ (b− v · x) . (S19)

That is, the integral of a multivariate Gaussian over the
half space defined by v ·x < b. v is an arbitrary real vec-
tor and A is a strictly positive-definite symmetric matrix.
We begin with the simpler case where A is diagonal. The
generalization for the non-diagonal case will be immedi-
ate. The integral is then

I(A,v) =

∫ ∞
−∞

dNx e−
1
2

∑
i λix

2
iΘ (b− v · x) ,

where the λi’s are the eigenvalues of A. We replace the
Heaviside function by the integral identity

Θ(b−x) =

∫ b

−∞
δ(z−x)dz =

∫ b

−∞

dz

2π

∫ ∞
−∞
dω exp[iω(z−x)] ,

where two auxiliary variables, ω and z, were introduced.
This identity holds for arbitrary x, b ∈ R. With this
replacement, after simple rearrangement the integral is
written as

I =

∫ b

−∞

dz

2π

∫ ∞
−∞

eiωz × (S20)(
N∏
j=1

∫ ∞
−∞

dxj exp

[
−
(

1

2
λjx

2
j + iωvjxj

)])
dω .

This is a product of Gaussian integrals, for each of which
we can use the integral identity

∫ ∞
−∞

exp

[
−1

2
az2 ± iωz

]
dz =

√
2π

a
exp

[
−ω

2

2a

]
, (S21)

which holds for any ω ∈ C and real a > 0. Thus,

I =

∫ b

−∞

dz

2π

∫ ∞
−∞

dωeiωz
N∏
i=1

√
2π

λi
exp

[
−ω

2v2
i

2λi

]
(S22)

=

√
(2π)N

detA

∫ b

−∞

dz

2π

∫ ∞
−∞

dωe
− 1

2

(∑ v2i
λi

)
ω2+iωb

.

The latter is again a Gaussian integral of the form of

Eq. (S21), and denoting D ≡
∑
i
v2i
λi

= vTA−1v we get

I =

√
(2π)N

detA

∫ b

−∞
dz

√
2π

D
exp

[
− z2

2D

]
. (S23)

The last integral is expressed in terms of the standard
error function

erf(z) ≡ 2√
π

∫ z

0

e−x
2

dx , (S24)

such that

I(A,v) =
1

2

√
(2π)N

detA

[
1 + erf

(
b√
2D

)]
,

D ≡ vTA−1v .

(S25)

This completes the derivation. While this is not neces-
sary for the present needs, we note that the formula (S25)
is valid also when A is not diagonal. This can be seen
by a simple change of variables.


