Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017 ## **Supporting Information:** ## Phase separation in Ceramide [NP] containing lipid model membranes: Neutron diffraction and solid-state NMR Annett Schroeter¹, Sören Stahlberg², Barbora Školová^{2,3}, Stefan Sonnenberger¹, Adina Eichner¹, Daniel Huster², Kateřina Vávrová³, Thomas Hauß⁴, Bodo Dobner¹, Reinhard H.H. Neubert^{1,5}, Alexander Vogel² ¹ Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany ² Institute for Medical Physics and Biophysics, University of Leipzig, Germany ³ Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic ⁴ Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany ⁵ Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany **Fig. S1** Dependence of the structure factors of PhA (A) and PhB (B) of the model membrane composed of CER[NP]-C24/CHOL/TA (1:1:1 mol/mol) on the D_2O content at 32°C and 57% RH. Data is shown for orders 1 (black), 2 (red), 3 (green), 4 (dark blue), 5 (light blue) and 6 (pink). **Fig. S2** Comparison of the neutron diffraction pattern of the model membrane composed of CER[NP]-C24/CHOL/TA (1:1:1 mol/mol) measured at 32°C (black solid line) with the pattern of the same sample at 50°C (dashed green line) measured at 100% D_2 O. **Fig. S3** Comparison of the NSLD profiles of PhA (A) and PhB (B) of the model membrane composed of CER[NP]-C24/CHOL/TA (1:1:1 mol/mol) at 50°C and 32°C. All profiles were determined at 57% RH and 100% D_2O . **Fig. S4** Cartoon representation of the liquid-crystalline phase observed in the NMR spectra at 65°C and 80°C. At 65°C large portions of CER[NP] and TA are still in a crystalline phase. Therefore, the liquid-crystalline phase has a very high CHOL concentration and the few CER[NP] and TA molecules present adapt their length to CHOL. As the crystalline phase almost completely vanishes at 80°C more CER[NP] and TA molecules are added to the liquid-crystalline phase reducing the cholesterol concentration. Therefore, the influence of CHOL on the other molecules is reduced and leads to an increase in their order.