SUPPORTING INFORMATION

Controlled and Tunable Design of Polymer Interface for Immobilisation of Enzymes: Does Curvature Matter?

Claudia Marschelke^{1,2}, Ivan Raguzin¹, Anke Matura³, Andreas Fery^{1,2}, and Alla Synytska^{1,2*}

¹Leibniz Institute of Polymer Research Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany

²Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics, 01062, Dresden, Germany

³Dresden University of Technology, Faculty of Mathematics and Science, Institute of Biochemistry, 01062, Dresden, Germany

Keywords: Core-shell particles, stimuli-responsive particles, polymer brushes, grafting density, polymer interface, enzyme immobilisation, laccase

Corresponding Author

* E-mail: synytska@ipfdd.de (A.S.)

Tel.: +49 (0351) 4658 475

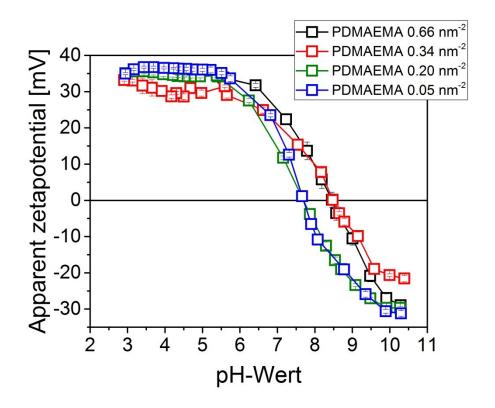

Fax: +49 (0351) 4658 474

Table S1. List of the synthesized flat reference samples with their corresponding parameters.

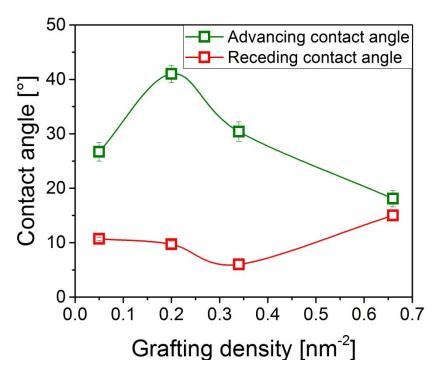

Sample ID	thickness ^{dry} [nm]	thickness ^{swollen} [nm]	Swelling ratio	M _n [g/mol]	Grafting density [nm ⁻²]
Flat PDMAEMA-100	51.9	175.4	3.38	62 000	0.66
Flat PDMAEMA-50	25.3	102.0	4.03	59 000	0.34
Flat PDMAEMA-25	12.5	40.9	3.27	50 000	0.20
Flat PDMAEMA-10	4.2	9.5	2.25	62 000	0.05

Table S2. List of the synthesised core-shell particles with their corresponding parameters.

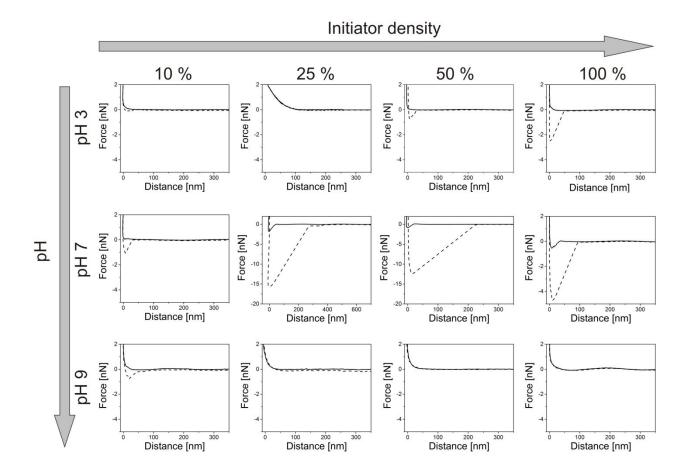
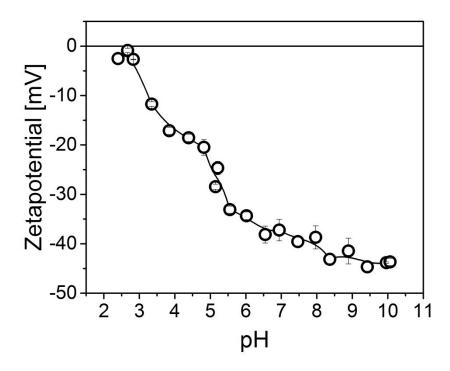
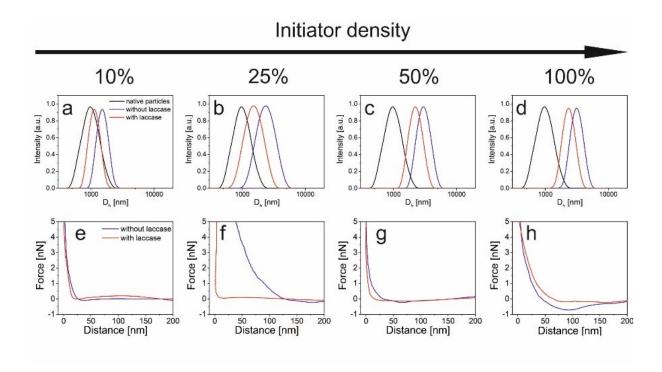
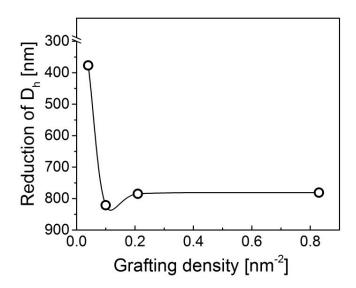
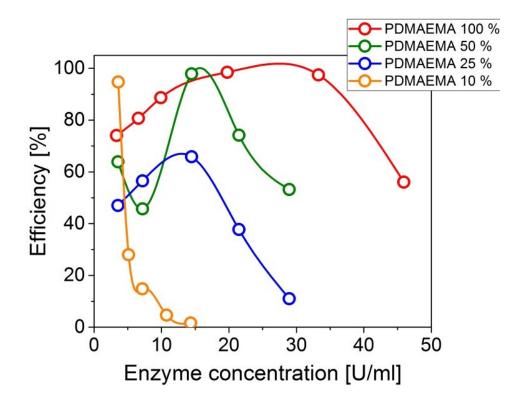

Sample ID	Core size	Size ^{DLS} [nm]	Shell thickness ^{TGA} [nm]	M _n [g/mol]	Grafting density [nm ⁻²]
800 nm-PDMAEMA-100	800 nm	3115	46	37 000	0.83
800 nm-PDMAEMA-50	800 nm	2933	20	61 000	0.21
800 nm-PDMAEMA-25	800 nm	2243	9	56 000	0.10
800 nm-PDMAEMA-10	800 nm	1549	2	40 000	0.04

Figure S1. Apparent zetapotential as a function of pH for planar PDMAEMA brushes with different grafting densities.

Figure S2. Advancing and receding contact angles on PDMAEMA-modified surfaces determined by ADSA captive bubble measurements at pH 3.

Figure S3. AFM force-distance curves taken measured at pH 3, 7 and 9 for PDMAEMA brushes with different grafting densities on planar substrates. Solid line: approaching curve; dashed line: retraction curve.


Figure S4. Zetapotential of laccase from *Trametes versicolor* versus pH.

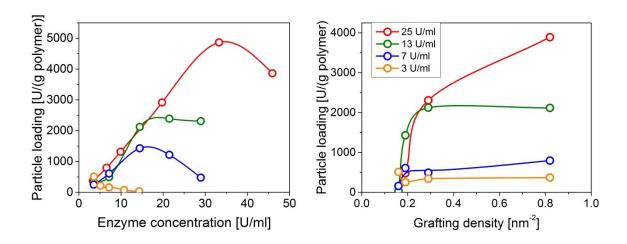

Figure S5. Particle size distributions (DLS) (S4a-d) and force distance curves (S4e-h) of PDMAEMA-modified particles (core diameter 800 nm) with different grafting densities before (blue lines) and after immobilisation (red lines) of laccase. All measurements were carried out in acetate buffer solution 10⁻² M at pH 4.

Figure S6. Change of the hydrodynamic diameter of PDMAEMA-modified particles (core diameter 800 nm) after loading with laccase versus grafting density.

Figure S7. Efficiency of the immobilisation on PDMAEMA-modified particles (core diameter 800 nm) versus enzyme concentration.

Fig. S8. Particle loading with laccase versus enzyme concentration (left) and grafting density (right).