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I. COMPUTATION OF POROSITY AND SPECIFIC SURFACE AREA

The porosity (Φ) is simply computed as the ratio between the number of fluid nodes and the total number of nodes.
The specific surface area is computed simply by counting the number of interfacial nodes. An interfacial node is

define as a fluid node having at least one neighbouring solid node considering the Lattice-Boltzmann speed model
D3Q19.

II. SLIT PORE GEOMETRY WITH RANDOM ROUGHNESS

The Figure 1 present 3 typical cut views of the slit pores with roughness generated here for the three aggregation
conditions (Ac = 1/8, 1/16, 1/32). Grey nodes corresponds to the solid part and blue nodes corresponds to the fluid
part. Some solid nodes seems to "fly" in the fluid part. Their connection with the walls exist but is in another plane
behind or ahead of the one presented here.

Figure 1. Slit pore with random roughness. Left: Ac = 1/8. Center: Ac = 1/16. Right: Ac = 1/32.

III. METHOD: HOW TO COMPUTE PORE SIZE DISTRIBUTION

The pore size distribution is defined, according to IUPAC[1], as "the distribution volume with respect to the pore
size". Experimentaly, the mercury porosimetry and the nitrogen adsorption measure are casualy employed to measure
the pore size distribution of a material. The pore size distribution computation algorithm depends mainly on the
modelisation method we are dealing with. However the basic principle remain the same. The ideer consists in
discretising the void part of the material into a finite number of points and measure the biggest sphere we can
introduce in the pore containing this point (P) (see. Fig 2). For atomistic simulation methods (Monte Carlo,
Molecular Dynamics...) the Gubbins et al.[2] algorithm is the most commonly used.

Figure 2. a. Pore size distribution measurement. b. Pore size distribution computation on lattice.

In the present case the discrete base of the the Lattice-Boltzmann gives a useful framework to compute the sphere
size (see Fig 2b. The algorithm starts with the computation of the distance between each liquid nodes to its closest
solid neighbour. The diameter of the sphere is twice this length. Then for each node we compare the size of the
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sphere with the one of its liquid neighbours. If one of them has a bigger sphere we move to this node and compare
again the sizes of the spheres with its neighbours. When the nodes has the highest size of sphere, we assign this size
to all the nodes we have been passing through and included inside the sphere of this node.

IV. INPUT PARAMETERS OF THE GEOMETRY COMPARISON

Inputs values: Fext = 2 108 Pa, Db = 6.04 10−8 m2.s−1, Ka = 6.04 m.s−1, Kd = 6.04 106 s−1, ν =
1.007 10−6 m2.s−1, ρf = 1000 kg.m−1, ρs = 4970 kg.m−1, Ci = 1 g.L−1.

Porosity Type Mesh size(∆x) Geom. param.(∆x) ∆x (m) Ss (m2) Vp (m3) Ss/Vp (m−1)

65%

spinodal dec. 70 × 70 × 70 σc = 0.4 1.44 10−7 2.51 10−9 6.26 10−16 4.00 106

inv. opal 99 × 99 × 99 dint = 100, ds = 108 1.38 10−8 6.80 10−12 1.70 10−18 4.02 106

honeycomb 118 × 116 × 1 a = 30, w = 15 2.55 10−8 5.88 10−13 1.47 10−19 4.00 106

70%

spinodal dec. 70 × 70 × 70 σc = 0.4 1.07 10−7 1.15 10−9 2.88 10−16 4.00 106

inv. opal 97 × 97 × 97 dint = 98, ds = 108 1.31 10−8 5.64 10−12 1.41 10−18 4.00 106

honeycomb 118 × 116 × 1 a = 30, w = 13 2.48 10−8 5.73 10−13 1.43 10−19 4.00 106

73%

spinodal dec. 70 × 70 × 70 σc = 0.4 8.25 10−8 5.68 10−10 1.42 10−16 4.00 106

inv. opal 94 × 94 × 94 dint = 95, ds = 108 1.29 10−8 5.24 10−12 1.33 10−18 4.00 106

honeycomb 118 × 116 × 1 a = 30, w = 11 2.41 10−8 5.6 10−13 1.40 10−19 4.00 106

Table I. Inputs values for the design of geometries: spinodal decomposition, inverse opal and honeycomb.

“Geom. param.” (geometric parameters) stands for the specific parameters we employed to generate each of the
geometries. In the case of spinodal decomposition (“spinodal dec.”) σc corresponds to the threshold value employed
for the Ostwald ripening algorithm. In the case of inverse opal (“inv. opal”), dint corresponds to the distance between
the spheres and ds to the spheres diameter. In the case of honeycomb geometry, a correspond to the characteristic
length of the hexagons and w to the thickness of the profile.

V. ADSORPTION ISOTHERMS OF THE GEOMETRY COMPARISON

The Fig. 3 shows the isotherms for the three geometries (honeycomb, inverse opal and spinodal decomposition)
keeping adsorption capacity constant for low and high concentration in solute. The adsorption isotherms are exactly
the same, and reflect the Langmuir model of adsorption introduced at the microscopic scale in the Lattice Boltzmann
scheme. It confirms that keeping Φ and Ss/Vp constant gives the same adsorption capacity for all the concentrations.

Figure 3. Adsorbed quantity considering the saturation of the adsorption sites.
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VI. RELATION BETWEEN REDUCED UNITS AND SCIENTIFIC INTERNATIONAL UNITS IN
LATTICE BOLTZMANN SIMULATIONS

The Lattice Boltzmann model used here runs in reduced units (also called LB units). We present below the relation
to transform the adimensional results in scientific international units (SI units). The Table II summarize the symbols
and their units used here. In LB units the distance between two nodes of the grid corresponds to xlb. The time step
corresponds to tlb. In the algorithm, the viscosity of the fluid is constant (νlb = 1/6 in lattice units)[3]. The density of
the fluid is also dimentionless. It has be considered constant, corresponding to an incompressible fluid (ρlb = 1 lattice
units). Translating to real units first requires defining the real distance between two nodes xr and the real viscosity
of the fluid νr (in SI units). The resulting time step can then be calculated as:

tr = tlb
νlbx

2
r

νrx2
lb

. (1)

The real external force density Fextr can be computed when we further specify the real density of the fluid ρr:

Fextr
Fextlb
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flbx3
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or:

Fextr = Fextlb
ρrxr

ρlbxlb

(
tlb
tr

)2
(3)

Similarly, the average velocity of the fluid is computed using:

v̄r = v̄lb
xrtlb
xlbtr

, (4)

for the bulk diffusion coefficient:

Dbr = Dblb
x2

rtlb
x2

lbtr
, (5)

for the adsorption coefficient:

kar = kalb
xrtlb
xlbtr

, (6)

and for the desorption coefficient:

kdr = kdlb
x2

rtlb
x2

lbtr
. (7)

The pore volume and specific surface area are simply given by Vp = Nfx
3
r and Ss = Nadsx

2
r, respectively. For the

total concentration of species in the fluid:

Ctot = Dmaxrx
2
r

DmaxlbVpx2
lb

(8)

For the external concentration of species i.e. the contration of species present in the fluid at the adsorption equilibrium:

Cext = Ctot(1 − Fa) (9)

For the maximum amount of adsorbed tracers for each adsorption site:

Dmaxr = Dmaxlb
VpCix

2
lb

x2
r

(10)
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Description Name in LB units LB units Name in SI units SI units
Distance between two nodes xlb ∆x xr m

Time step tlb ∆t tr s
Mass mlb ∆m mr kg
Force flb ∆f = ∆m.∆x.∆t−2 fr N

Pressure Plb ∆p = ∆f.∆x−2 mr Pa
Viscosity νlb ∆x2.∆t−1 νr m2. s−1

Density ρlb ∆m.∆x−3 ρr kg.m−3

External force density Fextlb ∆p.∆x−1 Fextr Pa.m−1

Average speed v̄lb ∆x.∆t−1 v̄r m.s−1

Bulk diffusion coefficient Dblb ∆x2.∆t−1 Dbr m2.s−1

Adsorption coefficient kalb ∆x.∆t−1 kar m.s−1

Desorption coefficient kdlb ∆t−1 kdr s−1

Maximum amount of adsorbed
tracers for each adsorption site

Dmaxlb - Dmaxr kg.m−2

Initial concentration - - Ci kg.m−3 or g.L−1

External concentration - - Cext kg.m−3 or g.L−1

Porous volume Nf - Vp m3

Specific surface area Nads - Ss m2

Table II. Description of the different variables used in LB units and SI units

Refinement `x(∆x) `y(∆x) `z(∆x) ∆x(m) Fext(Pa/m) 〈vy〉(m/s) KΦ(m2)
1 50 50 52 5.10−8 5.109 1.15 2.3.10−13

2 100 100 104 2.5.10−8 5.109 1.12 2.2.10−13

3 150 150 156 1.7.10−8 5.109 0.9 1.8.10−13

4 200 200 208 1.25.10−8 5.109 0.9 1.8.10−13

Table III. Effect of mesh refinement on fluid behavior in a slit pore with random roughness on wall (Ac = 1/8).

VII. EFFECT OF MESH SIZE ON PERMEABILITY IN SLIT PORE WITH AGGREGATED RANDOM
ROUGHNESS

This section presents the results on the investigation of the effect of the size of the mesh in the case of a slit pore
with aggregated roughness on the wall (Ac = 1/8). This investigation comes from the interrogation about the origin
of the surprisingly higher permeability with a roughness with Ac = 1/8 compared with a slit pore.
To increase the mesh refinement we take the aggregated geometry (with roughness) lets say with the refinement

factor equals to 1 and scale it up. For example, for a refinement factor of 2, each node of the initial geometry gives
its value to four nodes of the refined geometry. For a refinement factor of 3 each node becomes 9 nodes in the refined
geometry. For each refinement factor we adapt the value of the distance between the nodes ∆x to keep the global size
of the geometry constant and the pore size constant.

Table III presents the results and highlights an influence of the mesh refinement on the properties of the fluid
creating in the case of less refined mesh some artefact. The permeability decreases with the mesh refinement meaning
that the initial geometry is sensitive to simulation artefact. More over the permeability of the equivalent slit pore
is 2.1.10−13 m2 which is higher than the permeability with the refined mesh. The unexpected effect is a simulation
artefact.
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