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Rotational Reynolds Number

The rotational Reynolds number is calculated as

ReR =
ρD2ω

η
(1)

where ω, D, ρ and η are the angular velocity, helical diameter, fluid density and fluid viscosity,
respectively. In Fig. S1, we show the variation of the rotational Reynolds number for different
parameters. In our simulations it varies from 9× 10−3 to 2× 10−4.
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(a) (b)

Figure S1: Rotational Reynolds ReR numbers (a) as a function of the number of turns for varying
torque strengths for L/R = 5.92 and (b) as a function of pitch length and helical radius ratio for
N = 1.25. Here, τ0 = 1.0× 10−18 kg m2/s2.

Rotational drag coefficient

In Fig. S2, the rotational drag coefficients along the long axis of the helix are plotted as a function
of the number of turns. The drag coefficients κrot were obtained from the simulations by taking
the slope of the angular velocity of the helix as a function of the hydrodynamic drag along the long
axis.

Figure S2: The viscous rotational drag coefficients along the long axis of the helix are plotted as a
function of the number of turns for L/R = 5.92.

Shape optimization

In the main text, the propulsion velocity and the efficiency are shown to depend on the geometrical
shape of the helical particle (cf. Figs. 1 and 5). Here, for the propulsion of the helical particles
with different areas of cross-section, namely the helix, helicoid A and helicoid B, it is shown that
the helix has an optimal angular velocity because it experiences less viscous drag from its smaller
surface area than the other two shapes (Fig. S3). Thus, the propulsion velocity is maximized for
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the helix.

Figure S3: Angular velocities of the helix, helicoid A and helicoid B for pitch length and helical
radius ratio of L/R = 5.92, and N = 1.25 helical turns. The data have been obtained without
thermal fluctuations.

Wobbling of the helices - influence of thermal fluctuations

In Fig. S4, the projection of the orientation of the long axes of the helices along their initial
orientations is plotted against time for the Methods 1 and 2. When a constant torque (Method 1)
is applied on the helical particles, strong wobbling is observed in the smaller helices with fractional
turns (N < 1). This wobbling decreases with the increasing number of turns N due to the increase
in the symmetry of these helices (see Fig. S4 A). Thus, for large non-integer values of the helical
turns wobbling is negligible and the helical particle moves in a straight line. The differences between
the Methods 1 and 2 for the deterministic and the thermalized cases are illustrated in Fig. S4 B.

Figure S4: The projection of the long axis of the helix along ûx for different values of helical turns at
constant external torque, without thermal fluctuations. Oscillations in the data indicate wobbling
of the helices.

3



Propulsion efficiency

In Fig. S5 we show the efficiencies ε = v/(ωR) for the three different shapes as a function of the
ratio L/R. In contrast to the data in Fig. 2.a for the propulsion velocities, the efficiency depends
only weakly on the particle geometry and is maximized at a somewhat larger value of L/R that the
velocity (see also Fig. 2.c in the main text).

Figure S5: Efficiencies of the different helical particles as a function of the pitch length for N = 1.25
helical turns.

Rotation with thermal fluctuations

The rotation due to the external torque applied on the helices overcomes the effects of the thermal
fluctuations on the rotational motion of the helices. In SI Fig. S6, we observe that the perpendicular
orientations are unaffected by the thermal fluctuations since τ > 48kBT .

(a) N = 0.5 (b) N = 1.25

Figure S6: Plot shows the orientation of the perpendicular axis ĉ⊥ · ûz at different torque strengths
for N = 1.25 L/R = 5.92, with thermal fluctuations.

Helical length

As expected, both the angular and propulsion velocities grow linearly with increasing torque. Once
the helical particles have achieved stable motion for a given torque, the angular and the propulsion
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velocities scale inversely with the number of turns N of the helices for large values, as shown in
Fig. S7.

(a)
(b)

Figure S7: (a) Deterministic angular and (b) propulsion velocities of a driven helix with N helical
turns, 30 nm helical radius, L/R = 5.92 pitch length to helical radius ratio, and τ = 1.0 × 10−18

kg m2/s2 external torque. The continuous line is an asymptotic 1/N fit of the data.

Fluidity

In the simulations without thermal fluctuations at low Reynolds numbers, the angular and the
propulsion velocities obtained are consistent with linear dependence on the fluidity in the Stokes’
limit, as shown in Fig. S8.
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(a)
(b)

Figure S8: (a) Angular frequency and (b) propulsion velocity as a function of fluidity 1/η of a helix
with a 30 nm helical radius, L/R = 5.92 pitch length and helical radius ratio, and N = 1.25 helical
turns. The lines are linear fits to the data without thermal fluctuations.

Péclet number

To quantify the influence of the external torque on the directed motion of the helices, we calculate
the Péclet number that is defined as the ratio of the diffusive and the advective time scales. For
our system, the translational Péclet number is given by PeT = vL/DT, where v is the propulsion
velocity, L is the length of the helix, and DT is the tracer diffusion coefficient of the particle (see
SI Figs. 9 and 10). The propulsion velocity used in the calculation of the Péclet number is the
propulsion velocity obtained in the absence of the thermal fluctuations in the fluid. The diffusion
coefficient DT = kBT/γ was obtained by measuring the effective drag coefficients γ of the stationary
helical particles in Poiseuille flow. The effective drag coefficients depend on the orientation of the
helix with the fluid flow through the relation 1/γ = (1/γ⊥ + 2/γ‖)/3.
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Figure S9: Diffusion coefficients (DCs) as a function of the number of turns of a helix with a 30 nm
helical radius, and L/R = 5.92 pitch length and helical radius ratio. Circles and triangles are the
DCs for motion along the parallel and perpendicular axis of the helix. The DC for motion along
the parallel is inversely proportional to the length of the helix.

(a) (b)

Figure S10: a. Translational Péclet number as a function of the number of helical turns for helices
with a pitch length to helical radius ratio of L/R = 5.92 and a varying external torque in a fluid
at temperature T = 300 K. b. Péclet numbers of a helix of pitch length to helical radius ratio of
L/R = 5.92 with varying number of helical turns as a function of the applied external torque. Here,
τ0 = 10−18 kg m2/s2.

Chiral separation

Fig. 4 in the main text shows the chiral separation of (+) and (−) helices in the presence of thermal
fluctuations; Fig. S11 shows the trajectories of (+) and (−) helices without thermal fluctuations
and with the same driving torques in Fig. 4.
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(a) N = 0.5 (b) N = 1.25

Figure S11: Deterministic displacements along the x-direction of (+) and (−) helices with (a)
N = 0.5 and (b) N = 1.25 turns that are driven by varying constant external torques without
thermal fluctuations. τ0 = 10−21 kg m2/s2.

Finite size effects

An important aspect of any hydrodynamic simulations is a careful consideration of the finite-size
effects due to the long range of fluid-mediated hydrodynamic interactions between the particle and
its images due to the periodic boundary conditions. We have examined them here by simulating the
propulsion of helices and helicoids in a viscous fluid in the absence of thermal fluctuations. We have
first verified that for the system sizes considered here, finite-size effects for the angular velocities of
the helices are negligible. However, for the calculation of the propulsion velocities they have to be
taken into account. In Ref. 1 there is an analytical solution to the Stokes equations of motion for
a viscous fluid flowing past spatially periodic obstacles. To first order, the drag force experienced
by an obstacle is proportional to the fluid flow velocity based on the relation

Fdrag =
6πηRHv

1− B
LRH

(2)

where RH is the effective hydrodynamic size of the particle and L is the distance between the
points of the cubic lattice [1]. The constant B for a simple cubic geometry is B = 2.8373. This
analytical approximation for the dependence of the drag coefficient on system size has been found
to be in excellent agreement with numerical simulations of the diffusion of colloidal particles [2, 3].
The measured propulsion velocity for varying system size is fitted to Eq. (2) and the velocity is
extrapolated for L → ∞ by treating the drag force and the effective hydrodynamic size of the
particle as free parameters. In Fig. 12, the propulsion velocity of a 30 nm helical particle with
L/R = 5.92 and a length of 177 nm is plotted against the system size L. The extrapolated value
of the propulsion velocity for τ = 1.0× 10−18 kg m2/s obtained using the modified Stokes equation
of motion (Eq. (2)) is (1.63 ± 0.01) × 10−3 nm/ns. The maximum deviation of the measured
propulsion velocity for the system sizes tested from the extrapolated propulsion velocity is 2.8%.
In the simulations, the system size L is varied according to the length of the helix NL (number of
turns N times the pitch length L) such that L > 10NL.
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Figure S12: Propulsion velocity of a 30 nm helical particle with N = 1.25 helical turns as a function
of the system size, L. The solid line is an analytical fit to the finite size effects for the propulsion
velocity where a is the effective size of the helical particle and B = 2.8373.
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