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SM.1 Nondimensionalization and Timescale anal-
ysis

Let l be the characteristic size of a vesicle (e.g., l ∼ 10−5m) and
B̄ be the bending stiffness of the stiffer phase (e.g., B̄ ∼ 10−19J).
Then, there are three time scales that govern the dynamics: the
bending relaxation time scale τB = η l3/B̄, where η is the viscos-
ity of the fluid, the shear time scale τS = 1/S′, where S′ is the di-
mensional shear rate, and the Cahn-Hilliard diffusional time scale
τD = ν ′a′0/

(
l2ε ′
)
, where the primes denote the dimensional val-

ues of these parameters (a′0 measures the line energy and ε ′ mea-
sures the excess energy due to surface gradients). The dimen-
sional equations take the same form as Eqs. (1)-(17) in the main
text, but with the nondimensional parameters replaced by corre-
sponding ones with primes. Nondimensionalizing time by τB and
space by l, we obtain the system given in the main text with the
nondimensional parameters: S = τB/τS, a0 = a′0l/B̄, ε = ε ′/l and
ν = τB/(τDa0/ε).

In the simulations presented in the paper, we took ν = 1, a0 =
100 and ε = 0.04, which implies that τB/τD = a0/ε = 2.5× 103.
Consequently, Cahn-Hilliard diffusion and phase separation occurs
much more rapidly than motion due to bending relaxation or the
applied shear (S = τB/τS ranges from 5 to 320). This is confirmed
by the analysis presented below.

We next investigate the dependence of the multicomponent vesi-
cle dynamics upon the diffusive time scale τD by varying ν . The
results are shown in Fig. 1, where we use ν = 1/8, 1, and 2 so
that the corresponding ratios are τB/τD = 3.125× 102, 2.5× 103

and 5×103, respectively. We set ψ̄ = 0.3, ε = 0.04, a0 = 100, S = 40,
and ∆ = 0.19 for all three cases. As seen from the figure, the initial
stages of phase separation occur at different rates, with larger ν

driving faster phase decomposition.
As shown in Fig. 1, the initial phase decomposition occurs more

rapidly for larger ν . When t = 0.128, the phase distributions for
all the three cases are similar, despite a small shift due to tank
treading. The cases with ν = 1 and ν = 2 are tank-treading while
that with ν = 1/8 is phase-treading. Indeed, the critical shear rate
for ν = 1/8 is SC = 8.5, which is about a factor of 8 smaller that for
ν = 1 where SC = 72.

SM.2 Comparison with Keller-Skalak theory
Here, we compare the tilt angle θ and the tank-treading frequency
ωtt for a homogeneous membrane with the values predicted by the
two-dimensional version of the Keller-Skalak theory1,2. We take
L = 2.6442, S = 40 and B = 1 and varying the shape parameter ∆.
As shown in Fig. 2, when ∆ is small, the numerical results agree
with the 2D Keller-Skalak theory, for both tilt angle θ and the tank-
treading frequency ωtt . When ∆ increases so that the vesicle is
more elongated, the differences between the two increase. For the
tilt angle θ , the differences between them |θC−θT | ∼ ∆2, and for
the tank-treading frequency ωtt , we find |ωtt

C −ωtt
T | ∼ ∆1/2, where

SM.3 The asphericity of vesicle membranes

Following Ref.3, the shape and orientation of the vesicles can be
quantified by a shape parameter and inclination angle based on
the gyration tensor of the vesicle membrane
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the subscripts C and T denote the computational results and the
2D K-S theory, respectively.

The asphericity, αA, is defined as

αA =
Λmax−Λmin

Λmax +Λmin
(SM.2)

where Λmax and Λmin are the two eigenvalues of the gyration tensor
(Λmax ≥ Λmin).

In Fig. 3, we plot the time evolution of αA and θ for selected
cases of phase treading (upper and left, upper right) and tum-
bling (lower right). When the vesicle is phase treading the shape,
as measured by αA, and the inclination angle θ are out of phase.
When the vesicle is tumbling, αA and θ are in phase.

Further, as shown in Fig. 4, the θ −αA plane shows that during
phase treading (upper left and right, lower left), the dynamics are
characterized by closed loops centered around a non-zero tilt angle
that is close to that for an analogous homogeneous vesicle. In
contrast, when tumbling occurs (lower right), the graph is an open,
periodic curve. Tank treading (not shown) would correspond to a
single point in the θ −αA plane.

Note that, in some cases, there are sharp corners in the graphs in
the θ −αA plane, as shown in Fig. 4 (upper left) and the close-up
in Fig. 5 (upper left), when ψ̄ = 0.3, S = 80, and ∆ = 0.19. As seen
in Fig. 5, the sharp corner is associated with rapid changes in αA
and θ due to the motion of the ψ = 1 (red) phase passing through
the high curvature region of the vesicle as shown by the shape and
phase distribution of the vesicle when t = 1.86, which is the black
square in the θ −αA plot. The other vesicle morphologies shown
correspond to the open circle (t = 1.88, θ = 33.99) and triangle
(t = 1.85, θ = 34.2353).
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Figure 1 Multicomponent vesicle evolution with a 70−30 mixture of lipid phases: ψ̄ = 0.3 with fixed ε = 0.04, a = 100, S = 40, ∆ = 0.19 and varying
ν = 1/8 (solid), 1 (dashed-dot) and 2 (dashed). Here we plot the surface phase concentration ψ at indicated times t = 0, 0.0002, 0.0008, 0.0016,
0.0128, and 0.1.
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Figure 2 Comparisons of the tilt angle θ (a) and the tank-treading frequency ωtt (b) for the case of a homogeneous membrane computed with our
boundary integral method with the values predicted by the two-dimensional version of the Keller-Skalak theory (see text). Here we set L = 2.6442,
S = 40 and B = 1 and vary the excess arclength ∆.
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Figure 3 The dynamics of the inclination angle θ and the asphericity αA for phase-treading (upper-left) ψ̄ = 0.3, S = 80, and ∆ = 0.19; (upper-right)
ψ̄ = 0.5, S = 160, and ∆ = 0.19; (bottom-left) ψ̄ = 0.48, S = 28, and ∆ = 2.30; and tumbling (bottom-right) ψ̄ = 0.48, S = 4, and ∆ = 0.94.
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Figure 4 Trajectories in the θ −αA plane, for phase-treading (upper-left) ψ̄ = 0.3, S = 80, and ∆ = 0.19; (upper-right) ψ̄ = 0.5, S = 160, and ∆ = 0.19;
(bottom-left) ψ̄ = 0.48, S = 28, and ∆ = 2.30; tumbling (bottom-right) ψ̄ = 0.48, S = 4, and ∆ = 0.94.

33 34 35

 [
o
]

0.384

0.385

0.386

A

-0.5 0 0.5

t=1.86

-0.5

0

0.5

=35.0151

-0.5 0 0.5

t=1.88

-0.5

0

0.5

=33.99

-0.5 0 0.5

t=1.85

-0.5

0

0.5

=34.2353

Figure 5 Trajectories in the θ −αA plane, when ψ̄ = 0.3, S = 80, and ∆ = 0.19. (Upper-right) picture shows the shape and phase-distribution of the
vesicle at t = 1.86, which is denoted by the black square in the θ −αA plane.
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