
Supplementary Information and Figures: Simultaneous measurement of 
the Young’s Modulus and the Poisson Ratio of thin elastic layers

Supplementary Figure S1: Correction Factor in the Model of Dimitriadis et al.

Figure S1: Thickness correction factor C in the model of Dimitriadis et al. (equation 3) as a function of 
the Poisson ratio for a soft layer bound to a stiff substrate.
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Supplementary Information 2: Reconstruction of the Elastic Modulus  and the 𝐸

Poisson ratio 𝜈

The elastic modulus  and the poisson ratio  can be reconstructed by determining the pair of  and 𝐸 𝜈 𝐸

 which most accurately reproduces the measured datasets  and  for all radii . We define 𝜈 {𝛿𝑖} {ℎ𝑖} {𝑅𝑗}

the quality of a pair of  and  by calculating the squared deviation from the model. We calculate an 𝐸 𝜈

estimate for the elastic modulus using equation 3 assuming Poisson values between 0 and 0.6 with a 
step size of 0.001 for all measured data points :𝐸

𝐸 =< 𝐸({𝛿𝑖, ℎ𝑖, 𝑅𝑗}, 𝜌𝑠, 𝜌𝑃𝐵𝑆;𝜈) > (S1)

We then determine the estimated indentation depths  for all data points for each set of  and  𝛿𝑖, 𝑒𝑠𝑡 𝐸 𝜈

by solving equation 3 with the Euler method for . We observed that equation 3 can have 2 positive 𝛿

solutions for  of which the lower one is always realized in the experiment. We ensure that the Euler 𝛿

method converges at the lower solution by setting the start value to 1/10th of the measured .𝛿𝑖

We then choose the optimal pair of E and  by minimizing the standard deviation of :𝜈 𝛿

∑
𝑖,𝑗

(𝛿𝑖 ‒ 𝛿𝑖,𝑒𝑠𝑡)2→𝑚𝑖𝑛
(S2)

In our experiments, , , and  were the main contributors causing uncertainties in the 𝛿 ℎ 𝑅

reconstruction. We use a statistical approach to estimate the precision of the reconstruction by 

varying the input dataset . We vary every data point ,  and  by generating normally {𝛿𝑖, ℎ𝑖, 𝑅𝑗} 𝛿𝑖 ℎ𝑖 𝑅𝑗

distributed values around the measured data points and a standard deviation of their respective 
errors. We then determine an optimal pair of  and  by minimizing the standard deviation of the 𝐸 𝜈

indentations as described above. By repeating the data generation and reconstruction for 10,000 
iterations, we calculated distribution functions for both  and .𝐸 𝜈

For the three AA gels with Poisson ratios close to 0.5, these distribution functions were symmetric 
and normally distributed (See figure S2 A, B, and C). We therefore fitted a normal distribution 
function and report the fitted standard deviation as the error of both parameters respectively. In the 
case of the NIPA-gel which has a Poisson ratio of about 0.33, we observe that the distribution is 
asymmetric and wider towards lower Poisson ratios. We therefore fitted an asymmetric normal 

distribution with two different standard deviations  and  on both sides of the maximum and 𝜎𝑙 𝜎𝑢

report these standard deviations as the errors of the reconstruction:

𝑝(𝑥) = {𝐴𝑒

‒
(𝑥 ‒ 𝜇)2

2𝜎2
𝑙 ,  𝑥 < 0

𝐴𝑒

‒
(𝑥 ‒ 𝜇)2

2𝜎2
𝑢 ,  𝑥 ≥ 0

� (S1)

Additionally, about 10 percent of the reconstructions yielded  in the NIPA-measurement 0 < 𝜈 < 0.05

(see figure S2 D). We could reproduce this peak by simulating comparable indentation data for two 
spheres with radii of  and 5  for a gel with  and  by solving equation 3 for 200𝜇𝑚 00𝜇𝑚 𝐸 = 15𝑘𝑃𝑎 𝜈 = 0.3

 (figure S3 A).  We added normally distributed noise to ,  and   of a magnitude similar to our 𝛿 𝛿 ℎ 𝑅

experimental noise and applied our reconstruction algorithm. The results of one dataset which shows 
a distinctive peak at a Poisson ratio of  are shown in figure S3 B and C. The distributions 0 < 𝜈 < 0.05



are similar to our measured PNIPA data set, showing also a distinct peak near  (blue) far away 𝜈 = 0

from the value of  used during data generation. Therefore, we attribute this peak to finite 𝜈 = 0.3

measurement errors and suggest, that it is an inherent property of equation 3. For this reason, we 
did not consider reconstructions yielding  when fitting equation S3 to the distributions. Using 𝜈 < 0.05

this method, the reconstruction of 50 simulated datasets yielded  and 𝐸 = (15.4 ± 1.3)𝑘𝑃𝑎

, which is in excellent agreement with the original material parameters used to 𝜈 = 0.29 ± 0.05

generate the data sets. Therefore, our method is capable of reconstructing the material parameters.

Figure S2: Reconstructed distribution functions for  and , obtained by the steel sphere method. 𝐸 𝜈

The distribution functions for (A) 10% AA and 0.03% BIS, (B) 10% AA and 0.06% BIS, and (C) 10% AA 
and 0.10% BIS are symmetric and were fitted with a normal distribution function. For the 10% PNIPA 
gel (D), the distribution is wider towards lower Poisson ratios. We therefore fitted an asymmetric 
normal distribution with two different standard deviations above and below the maximum. 



Furthermore, the distribution has a peak near . We excluded all reconstructions which yielded 𝜈 = 0

 (marked in blue) from the fitting.𝜈 < 0.05

Figure S3: Reconstruction of a simulated experiment. (A) Simulated data for a gel with   𝐸 = 15𝑘𝑃𝑎

and . Error bars display the standard deviation of the normal distribution used to apply noise. 𝜈 = 0.3

The results of the reconstruction algorithm are displayed in the subfigures B and C.


