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The details for the error calculation: In our simulations, statistical errors are estimated by the
block average method [46] which is described briefly in the following. Suppose {A;} (i=1, 2, ..., Ng)
is a series of Ng correlated samples of quantity A collected in a simulation. To estimate the statistical

error of A, which is the mean of {A;}, one then divides the series into Ng non-overlapping blocks of

length £. The block average of the n-th block is computed as

1 k
AB,n = ZZA(n—l)kﬁ
i=1

The average of each block forms a new series {4z ,} (n=1,2,...,Ng). When £ is large enough, the new

series is almost uncorrelated and the statistical error of A can be estimated by standard means.
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Where ZB is the mean of the new series {43 ,}. In our paper, we set Ng=Ng/2, Ng/4, Ng/8, ..., 2, in
each case, an estimated error is obtained and we use the maximal one as the statistical error. To
compute the statistical error of a quantity Q which cannot be computed directly in the simulations,
such as the specific heat (Cv) and the critical temperature 7¢c. We divide the series of samples into

five blocks and compute the Q value in each block. Then the statistical error is computed as
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GQ_NB—I,Z‘(Q” 0)

In our simulation, Ng=107, and a sample is collected every 10 attempted replica exchanges.
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Fig.S1. R ?/N as functions of T/¢ for chains of different chain length N.
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Fig.S2. The probability distribution curves at the transition temperature and two temperatures

slightly deviating from the transition temperature.
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Fig.S3. C,/N as functions of 7 for chains of different length N when & = 1.5.

Comparison with the Manning criterion for counterion condensation: According to the
Manning theory (Manning G S, Ray J 1998 J. Biomol. Struct. Dyn. 16, 461), z6, the fractional extent

of charge neutralization by condensed counterions of valence z, can be written as:
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where ¢ is the unit electrostatic charge, D is the dielectric constant of ion-free solvent, kzT is
Boltzmann's constant times temperature, and b is L/P, the polymer contour length divided by the
number of ionized groups on the polymer. In our model, reduced units are used where z =1, ¢ =1, D
=1, kg =1, and as the bonds are c, N2 ¢ and \/g ¢, an average of b can be obtained as, b = (6xc +
12x\2¢ + 8x\3¢)/26 = 1.4162xc, where ¢ is the lattice constant with ¢ =1. Based on the above
relations, it can be deduced that @ =1- bT. Therefore, 8 =0 when T > 1/b, otherwise, 8 =1- Th. The

variation of @with T is plotted in Fig. S4 as a solid line.



The €in the Manning theory has the same mean as “1- ¢” in our manuscript, where ¢ is the effective
charge per segment used in our manuscript. The variation of 1- ¢ with T is also plotted in Figure S4
with dashed and dotted lines. It is noted that the variation of & with T is similar to that of the 1- ¢
with 7 when ¢ = 0. When ¢ > 0, however, the variation of @ with T is quite different with that of the
1- g with T. The above comparison indicates that Manning theory, based on the primitive model of a
cylinder with uniform surface charge in a uniform dielectric, is inapplicable to our case with & > 0,

especially when the pearl-necklace structures are formed.
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Fig. S4 The variation of fand “1- ¢” (q is the effective charge per segment) with 7.
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Fig. S5 Snapshots of typical conformations at different temperatures for system with N=64 and ¢
=1.5. Only chain monomers (green) and the nearby counterions (red) are shown. The pictures are not

displayed in the same scale for clarity.
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Fig. S6 Snapshots of typical conformations at different temperatures for system with N=125 and &

=1.5. Color scheme is the same as that in Fig. S1
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Fig. S7 Snapshots of typical conformations at different temperatures for system with N=170 and ¢

=1.5. Color scheme is the same as that in Fig. S1.
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Fig. S8 Snapshots of typical conformations at different temperatures for system with N=192 and ¢

=1.5. Color scheme is the same as that in Fig. S1.
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Fig. S9. The probability distribution and the free energy curves at the transition temperature of

7=3.0970 for system with N=125 and ¢=1.5.
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Fig. S10. The probability distribution and the free energy curves at the transition temperatures for

system with N=170 and £=1.5. (a) 7=3.748. (b) T=2.9831.
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Fig. S11. The probability distribution and the free energy curves at the transition temperatures for

system with N=192 and £=1.5. (a) 7=3.568. (b) T=2.7850.
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Fig. S12. The entropy as a function of temperature for a system with N=64 and various ¢ values.
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