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S.1 Derivation of the approximate autocorrelation function

Here we present the derivation of Eq. (13) in the main text. First, Egs. (3) in the main
text are expressed in the Fourier representation:

95C ~ ~ ~
atA = — (Dq® + k4 [B]*?) 6Ca — k4 [A]6Cp + k-dCc,
5~ ~ ~ ~

aafB = — (Dpq® + k4 [A]*?) 6Cp — ki [B]*6Ca + k-dC, (1)
5C - - ~

aafc = — (Dg* + k) 6Cc + k4 [B]*96Ca + k4 [A]*6Cp,

where 6C A, 563, 550 are functions of the wave vector ¢ and time ¢, and we have as-

sumed that Dy = Do = D. The normal modes for Egs. (1) are characterized by three

eigenvalues: 12

1 1
Ao ==¢"D, A =—3[¢"(D+Dp)+ Rl £ VAP +2[AR+ B2, (2)

and by the corresponding eigenvectors:

1 1
Xy = 0 , X4 = F , (3)
K|[B] -1

where R = ki ([A]? + [B]°?) + k_ is the relaxation rate, K = k4 /k_ is the equilibrium
constant, A = D—Dp < 0, 8=k, [A]“/R, e =28—1and Fy = (¢?D+)\+)/(¢?Dp+A\+).
The relevant components of the matrix Zj; (see Egs. (7)-(10) in the main text) are:

Zpp = (F_e — Fy ™) /(F- - Fy),

Zoc =y + (1 —y)(F_e™ — Fre) /(P = Fy), (4)

Zpc = (e — ) J(Fo = Fy),

where y = K[B]®/(1 + K[B]?). Next, using the identities:

F_— Fy = \/q*|A]2 + 2¢¢*|A|R + R?/(RB),
Fi + F_ = (¢°|A| + Re) /(RB),

1



and assuming Qp = Q¢ = Q, we express the function g(q,t), given by the general formula:
g = Q%[B|*“Zgp + 2QpQc|B)“ Zpc + Q%[C]EQZCC (see Eq. (10) in the main text), as
follows

Bl
e R e N Gt R e | N
where
X = (R+°|Ale)/ V¢ | A + 2¢q?|A[R + R2. (7)
Deriving Eq. (6), we have used the identity
BIB]* = (1 —y)(1 - B)[C]*. (8)

It follows from the relations: 8 = K[A]®{1+ K ([A]°?+[B]?)}~! and K[A]/[B]* = [C]“,
hence (1 — y)(1 — B) = {1+ K([AJ*0 + [B]*0)}~1 = B[BJe4/[C]e1,

Then the autocorrelation function (see Eq. (6) in the main text) normalized to unity
at t = 0 assumes the following form

B yp 1—y _
G(t) = ——" yﬂh(t/m) + =g+ (St = J-[x, t] + J[1,t] + J-[1,t])  (9)
where
TelAot] = @ [ dPqe tUPEI) 4(g)cs ), (10)

74 = L?/(4D), A denotes the amplitude and Q = H L?/(2,/7)3 is the normalization factor.
In Eq. (9), A equals either x or 1.

Although we cannot calculate the integrals Jy exactly, we can approximate them by
applying the double-tangent construction to the eigenvalues A+ (g?). Thus we assume that
At (q?) ~ A1(q?) if ¢ < qe and A\1(¢?) =~ AZ(¢?) if ¢ > q., where A (¢?) and A\ (¢?) are the
tangents to A+(¢?) at ¢ = 0 and ¢ = oo, respectively, and ¢> = R/|A| is their intersect.
The tangents are given by the following expressions

)‘i = _D+q27

A\ =-D_¢*—R,

A7 =—-Dg¢* — R(1 - B),
A~ = —-Dgpq® — RS,

(11)

where Dy = DB+ Dp(1 — ) and D_ = D(1 — ) + Dpp are the effective diffusion
coefficients. The amplitude y can be expressed as a function of the dimensionless variable
x = (q/qc)* )
+ ex
T)= ——. 12
x(x) o y— (12)

The double-tangent construction applied to the denominator leads to the approximation:

m2+26x+1%{1+6m o<l (13)

e+x ifax>1



hence

1 fx<l1
~ 1
x(@) T ifx>1. (14)
€e+x

This approximation of x(z) is continuous at x = 1. Then the integration over the wave
vectors is split into two intervals: ¢ < g. and ¢ > q., and Ji[A,t] is approximated by

Je[At] =~ JS[A ] + JT[A, ], (15)

where

dc qg
JE[A ] = QWQ/ dqze_iHqu/ dgPe” TR A(g?)eNE @), (16)
0 q

JT[A Y] = 27Q

+ / dg. e T / dqZe= 101 A(g2) e (@) (17)
qc q2

and qi = ¢> — ¢2. Moreover, if we assume that iH 2¢%2 > 1, which is equivalent to the
condition R7a > w2, where A = L?/(4|A|) and w = H/L, then the main contributions
to the integrals come from ¢, ~ 0. Thus the integration over ¢, from 0 to g. can be
extended to infinity and the second term in (17) can be neglected, which gives

JS[A ] ~ QWQ/OOqu $H?+tDx)q *i qLA<( e t)‘:l:(ql)
0
Ji[.A,t] %271’9/0 dqze H +tD)g / q e 4 ql.A>( ) tA7 (a7 ) (18)
q?

J>[A,t]z27r§2/ dg e~ (aH*+D5)a / dg? e~ 11791 4> (g2 )2 (aD),|
0 q?

where A< and A~ correspond to ¢, < q. and ¢, > q., respectively. Then using (14) and
the relation
(I+ex)/(@+e)=e+(1—e)/(x+e), (19)

where now z = ¢% |A|/R, we obtain

JElx.t] = JE (L1, o0
JIlt =eJZ[Lt]+ (1 —€)JZ[(z+e) ' 1.
The integration with the amplitude A = 1 yields
TEILA) = hltfry) |1 = e Fra Ot/
J> 17 h t —RTA(1+t/T+)’
+[ t] = h(t/Ta)e (21)

JS[L,t] = e Rth(t/r) [1 - e—RmOH/ﬂ)} ,
JZ[1,t] = e th(t/rg)e” Fra(tt/m)



where 7o = L?/(4D4), 7p = L?/(4Dg), and h(t) = (1 +1)~'(1 + t/w?)~ /2 is the auto-
correlation function for the single-component diffusion (see the main text). The integrals
J7[A,t] for A= (z + €)' adopt the following form

T [(x+ €)1 t] = Rrah,(t/ma) e a0t g (2B8RTA (1 +t/74)),

22
JZ[(x+e)" " t] = Rrae ® b (t/75) e T2 UH/T) g (2BRTA (1 4 t/7B)), (22)

where h,(t) = (1 4+ t/w?) 712, £(2) = ¢*E;(2) and

[e.e] e—u
Ei(z) :/ —du (23)
.U
denotes the exponential integral.® We recall that for z — oo, E1(2) ~ e~%/z, whereas for
z — 0, E1(2) ® —y — In z, where 7y ~ 0.5772 is the Euler constant.

Finally, combining Eqgs. (9), (15), (20), (21) and (22), we arrive at the approximation
G, (t) for the FCS autocorrelation function (see Eq. (13) in the main text):

N - 1oy _ —Fra(t4t/my)
_1—y+yﬂh(t/7—A)+1—y+yﬂ{h<t/7—+) [1 e Rra (14t }

+ Bh(t/Ta)e” FralHtime) 4 (1 — Bye BRln(t /rp)e Fra(lHt/T-)
+2B8(1 — B)Rra |hs(t)74) e FraOF ™) e (2BRTA (1 4 t/74))

Ga(t)

_ e ht h.(t/75) e—Rm(Ht/n)gl(gﬂRTA(l + t/TB))] }

We also notice that despite the assumption R7a > w2 made to derive the above approx-
imation, G,(t) behaves correctly in the limit R — 0, i.e., it tends to Go(t) (see Eq. (12)
in the main text). Moreover, if R7a is small the last term in (24) can be neglected and a
simplified version of G, (t) without the exponential integral can be used:

B yp 1—y  —Rra(l+t/14)
—71_y+y5h(t/TA)+71_y+yﬁ{h(t/T+)[1 o~ Fra (L4t }

+ Bh(t/ra)e” FAUFTH 4 (1 - ﬂ)e—Rth(t/TB)e—Rm(m/r)}.

G(t)
(25)

S.2 Comparison of G(t) with approximate autocorrelation functions

In Figs. 1-3, we compare two approximations of the autocorrelation function: G,(t) and
Gy(t), with Gy, (t) obtained directly from the theoretical model? by numerical integration.
We also show the limits of fast reaction, Goo(t), and fast diffusion, Gy(t) (see the main
text). We fix the value of the parameter d = D/(D + Dp) at 0.01 and change both § and
R. For R = 10 (the fastest reaction) and R = 0.01 (the slowest reaction), G,(t) and Gy(t)
are very close to each other, whereas the largest discrepancies occur at R = 1. G4(t) also
reproduces the limits of fast reaction and fast diffusion correctly but it decays too fast
with time for R = 1 and R = 0.1. In the case R = 0.01, G4(t) approximates G(t) almost
as well as G,(t), which means that it can be used for slow reactions.



S.3 Autocorrelation function for Qp # Q¢

Here we generalize the derivation of G, (t) presented in section S.1 for the case of different
fluorescence of components B and C. For Qp # Q¢, the function ¢(q,t) assumes the
following form

9(a,t) = QZ[CI ye™ + 2([13 . qﬁ) Q3= 8)+ Q2] (¢ +™)
eq (26)
+ %{XQBQC +¢(Qp — Qo) [@B(1 — B) + Qc b} (etA+ _ et)\_> 7
where
¢ = (@*|Al + €R)/V/¢'|A]? + 2¢¢*|A[R + R2. (27)

Substituting @p = Q¢ in (26), we recover Eq. (6). The autocorrelation function normal-
ized to unity at t = 0 is given by

G(t) = yBQEA(t/70) + 51— 9) [~ B) + Q28] (J4 [0, + T [1,1)

+ 50 9){@p@c (JiTu ]~ T I f) + Qe - @) [@s(1 - 5) +Qep] 23
X (J+[¢, t] - J,[(ﬁ,t])},

where 7c = 74 = L?/(4D), Qp = Q/Q, Qc = Qc/Q and Q* = Q3 (1—y)(1 - B) + Q6.
To perform integrals Ji[¢,t] we need an approximation for ¢(g). As a function of x, ¢ is
given by the expression:

T+ e d
p)=—2C e %er 41, 29
¢(z) Va2 +2x+1 dx (29)

thus, using (29) and approximation (13), we obtain

e ifz<1

¢(“’”)’%{1 ifo>1, (30)

hence
Ji[o,t] = eJS[1,1],

JZ[p. 1] = JZ[1,1]. (31)

Finally, using Egs. (28), (15), (20), (21), (22) and (31), we obtain the generalized form of
Ga(t) (cf. Eq. (24)):
Ga(t) = yBQEN(t/7c) + (1 — y){ [Qp(1 - 8) + Qo) h(t/ry) [1 — e—RTA(1+t/T+>]
+ 81 - B)(Qc — Qp)2e Rh(t/r-) [1 — e Frali+/r-)]
+ BRIt [ro)e” AU 4 (1 — B)QE e Mh(t/7p)e” Fralidt/T) (32)
+26(1 — B)QpQcR7a [hz(t/fo) e~ Bral+t/m0) e, (2BRTA (1 + t/7¢))
— e Bt (t)rp) e Bra (™) £ (28 RrA (1 + t/TB))} }

which reduces to (24) for Q@ = Q¢
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Figure 1: FCS autocorrelation function for the set of parameters y, d, 8 and R specified in the
figure. The time t and inverse of the reaction rate, R™!, are expressed in the units of 7o. The
legend in a concerns all figures: Gy, results from the numerical integration, G, and G correspond
to the limits of fast reaction and fast diffusion, respectively, GG, is the approximation given by
Eq. (24) and G; is a simplified version of G, (t) given by Eq. (25)
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Figure 2: FCS autocorrelation function for the set of parameters y, d, 8 and R specified
figure. The meaning of symbols is the same as in Fig. 1
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Figure 3: FCS autocorrelation function for the set of parameters y, d, 8 and R specified in the
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figure. The meaning of symbols is the same as in Fig. 1




