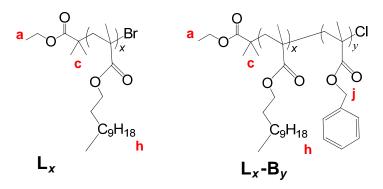
SUPPORTING INFORMATION: Self-assembly of poly(lauryl methacrylate)-b-poly(benzyl methacrylate) nano-objects synthesised by ATRP and their temperature-responsive dispersion properties

Melody Obeng^a, Amir H. Milani^a, Muhamad S. Musa^a Zhengxing Cui^a, Lee A. Fielding^{a, *}, Louise Farrand^b, Mark Goulding^b, Brian R. Saunders^{a, *}


^aSchool of Materials, The University of Manchester, Manchester, M13 9PL, UK ^bMerck Chemicals Ltd, Chilworth Technical Centre, University Parkway, Southampton, SO16 7QD, UK

Calculation of macroinitiator and copolymer compositions from ¹H NMR data

The structure for the macroinitator used is shown in Fig. S1. The macroinitiaor is abbreviated as L_x for the purposes of the following calculation. Equation S1 was used to calculate the degree of polymerisation (*x*).

$$x = \frac{1}{6} \left(\left(\frac{A_h + A_c}{A_a} \right) - 2 \right) \tag{S1}$$

For the above equations A_h , A_c and A_a are the integrals of the signals from the **h**, **c** and **a** protons, respectively.

Fig. S1. Structures and assignments for calculating *x* and *y* for the macroinitiator and diblock copolymers used in this study.

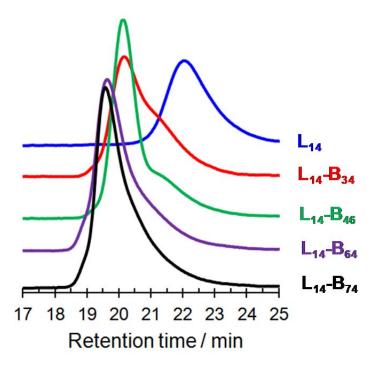
The following equation was used to determine the number of BzMA repeat units (y) in the L_x -B_y copolymers (Fig. S1) using the ¹H NMR data shown in Fig. 1.

$$y = (9x+3)\left(\frac{A_j}{A_h + A_c}\right) \tag{S2}$$

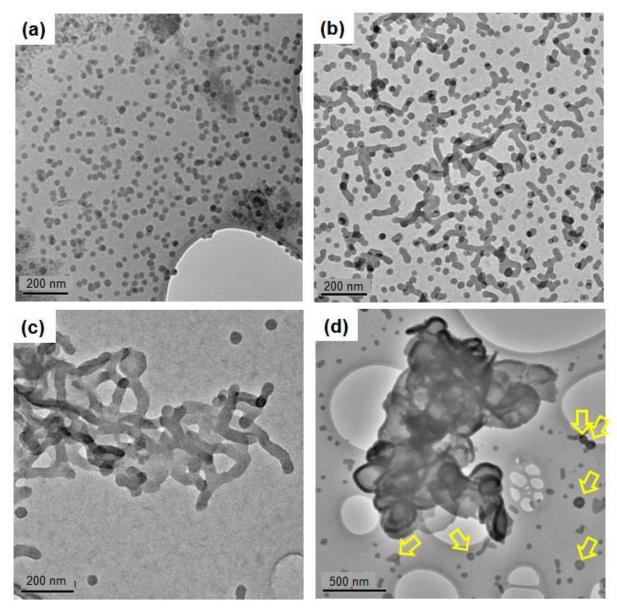
For equation (S2), A_j is the integral of the signal from the **j** protons and a value for *x* of 14.0 was used.

Calculation of N_{agg} and average separation between PLMA chains at the sphere surface

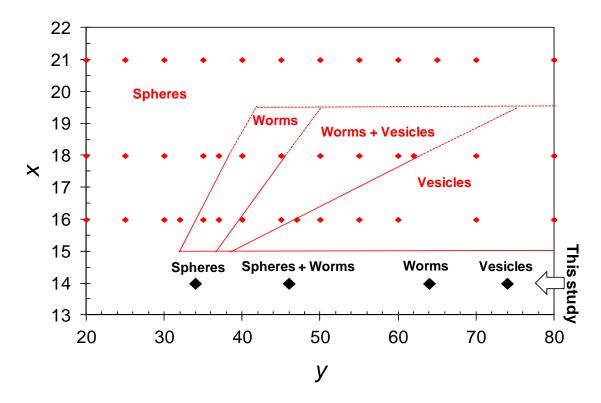
To calculate the aggregation number (N_{agg}) from the number-average diameter of the spheres determined from TEM (d_{TEM}) it was assumed that the latter corresponded to pure PBzMA without residual solvent. The latter assumption is supported by the literature¹. The procedure involved calculating the mass of one PBzMA chain (m_{PBzMA}) and also the mass of an average sphere (m_{sphere}) . These two values were then used to calculate N_{agg} . The value for m_{PBzMA} was calculated using

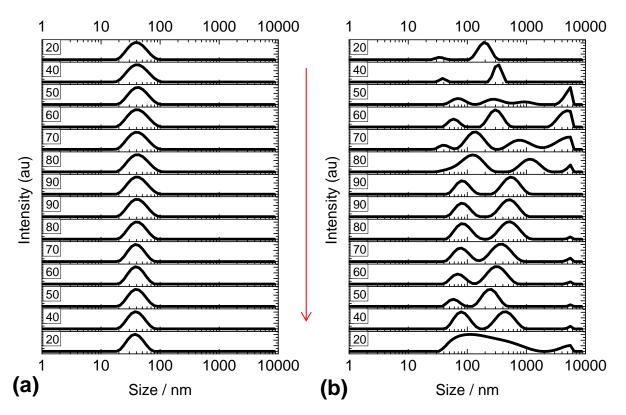

$$m_{PBZMA} = \frac{MW_{PBZMA}}{N_A} \tag{S3}$$

where MW_{PBzMA} is molecular weight of the PBzMA segment (34 x 176 g/mol = 5984 g/mol) and N_A is Avogadro's number. These values gave $m_{PBzMA} = 1.0 \times 10^{-20}$ g. The value for m_{sphere} was calculated using


$$m_{sphere} = \frac{\pi \rho_{PBZMA} d_{TEM}^3}{6}$$
(S4)

where ρ_{PBzMA} is the density of PBzMA. The latter was taken as² 1.18 g/cm³. Using $d_{TEM} = 20.5$ nm a value of $m_{sphere} = 5.3 \times 10^{-18}$ g was calculated. These data enabled the value for N_{agg} (= m_{sphere} / m_{PBzMA}) to be calculated as 530.


The average separation of chains at the sphere surface was estimated using N_{agg} and the average surface area of the spheres (A_{sphere}). A value of 1.3 x 10⁻¹⁵ m² for the latter was calculated using $A_{sphere} = \pi d_{TEM}^2$. The area per chain at the surface (A_{chain}) was then determined using $A_{chain} = (A_{sphere} / N_{agg}) = 2.5$ nm². The average separation between the chains at the surface would be ~ 1.6 nm assuming a cubic lattice at the surface.


Fig. S2 GPC chromatograms for the macroinitiator (L_{14}) and the diblock copolymers (L_{14} - B_{34} – L_{14} - B_{74}). The chromatograms were obtained using THF eluent and polystyrene standards.

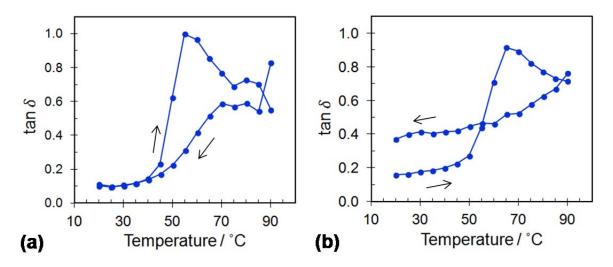

Fig. S3 Low magnification TEM images of diblock copolymer nano-objects deposited from *n*-dodecane dispersions containing (a) L_{14} - B_{34} , (b) L_{14} - B_{46} , (c) L_{14} - B_{64} and (d) L_{14} - B_{74} . The samples were stained with ruthenium tetra-oxide. The arrows in (d) highlight small vesicles.

Fig. S4 Phase diagram comparing ATRP-based $PLMA_x$ -PBzMA_y diblock copolymer nanoobjects from the present study (black diamonds and labels) with those prepared by nonaqueous RAFT dispersion polymerisation from Ref. 3 (red diamonds and labels).

Fig. S5 Dynamic light scattering size distributions for (a) L_{14} - B_{34} spheres and (b) L_{14} - B_{64} worms. The temperatures are shown (°C). The direction of the temperature ramp is shown with the arrow. The d_z and PDI data are shown in Fig. 4.

Fig. S6. Variation of tan δ (= G" / G', where G" and G' are the loss and storage modulus, respectively) with temperature for (a) L₁₄-B₄₆ and (b) L₁₄-B₆₄ dispersed in *n*-dodecane (20 % w/w). The measurements started at 20 °C.

References

- 1. M. J. Derry, L. A. Fielding, N. J. Warren, C. J. Mable, A. J. Smith, O. O. Mykhaylyk, and S. P. Armes. *Chem Sci* 2016.
- 2. www.sigmaaldrich.com Accessed November 2, 2016.
- 3. L. A. Fielding, J. A. Lane, M. J. Derry, O. O. Mykhaylyk, and S. P. Armes. *J Am Chem Soc* 2014, **136**, 5790-5798.