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1. Discretization and Numerical Solving  

1.1  Probability-Evolution Equation 

 

The calculation of the minimum free-energy path (MFEP) using the string method requires to evolve the 

probability of each conformation of each chain in the system according to the following equation: 
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which is eq (13) in the main text. The right hand side of eq (S1) can be obtained from eq (9) in the main text: 
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where  / ,F P j   is given by eq (6) in the main text: 
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The evaluation of  / ,F P j   is the most expensive part of the calculation and therefore we optimized 

its numerical computation. We will explain next our approach for calculating eq. (S3). For simplicity, we will write 

the equation for a fixed j and, therefore, we will drop this index from our notation. In practice, the evaluation of 

 / ,F P j   needs to be performed for all j, but this process can be trivially parallelized. In our code, the 

parallelization in j is distributed among processors using the MPI (Message Passing Interface) standard.  

We first discretize our equations into a lattice. Since our problem is two-dimensional, we discretize our system 

in the x and y directions in square cells of side  (where  is a discretization parameter that we choose to be equal 

to 0.5 nm in the present work). The discretized system has size Dx in the x dimension and Dy in the y dimension. 

While in principle two indexes can be used to label each cell (ix and iy, representing the coordinates of the cell in x 

and y dimensions), the matrix formulation of the problem requires to use only one index to label each cell. Thus, we 

define this index as i = ix + (iy-1)*Dx (note that 1 ≤ i ≤ DxDy). We now discretize eq (S3) as: 
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where np(,i) is the number of polymer segments that the chain in conformation  has in the lattice cell i and g(i,i') 

is a coefficient that the gives the strength of the VdW interactions between a segment in cell i and other segment in 

cell i' (see next section for its calculation).   

It is also useful to define: 

    
'

( ) ln ( ) , ' ( ')
p

s s

is

v
pot i i v g i i i

v
  

 
   


       (S5) 



S3 
 

In order to formulate the problem in matricial form, we define the following vectors:  
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and the matrix: 
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We can now rewrite eq (S4) as: 
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At this point it is important to note that Nconf = 2.5105 and DxDy  400. Therefore the matrix np has  108 

elements and the matrix multiplication in eq (S10) becomes one of the bottlenecks of the MFEP calculation. The 

calculation of pot(i) from eq (S5) is much faster than this matrix multiplication, but it requires to know p(i) and 

s(i) (the density of the polymer and solvent at cell i, respectively). The evaluation of p(i) is a time consuming 

process by itself as it also requires a matrix multiplication (s(i) can be straightforwardly determined once p(i) is 

known using the packing constraint, eq (3) in the main text).  

To write down the calculation of p(i) in matricial form, we start with eq (2) in the main text: 
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We can rewrite this equation as 
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The calculation of p(r,j) can be therefore trivially parallelized, so we will drop the index j in eq. (S13) for simplicity. 

We discretized the resulting equation, which results in:  
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We now define the vectors: 
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so that eq (S14) can be rewritten in matricial form as: 
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p p
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where the superindex T denotes the transverse matrix.  

The most expensive computation steps in the calculation of the MFEP are the matrix multiplications in eqs (S10) 

and (S17), which involve the matrix np. This matrix contains the number of segments that each polymer conformation 

has in each lattice site. For each chain in the system, we require to know the position of NconfL segments (where L is 

the chain length of the polymer), while np has a size equal to DxDyNconf. The maximum fraction of non-zero elements 

in np is, therefore, L/(DxDy). Using typical values of L  50 and Dx  Dy  20, we get a maximum fraction of non-zero 

elements of  0.125 and, thus, np is a sparse matrix (the real fraction of non-zeros is actually smaller than this because 

some conformations have more than one segment in a given lattice cell). We store np as a compressed matrix in 

memory due to its large size. In previous works,1, 2 we compressed np using a matrix of size NconfL where the element 

at the matrix position (,k) contained the position in the lattice of the segment k of conformation . In this previous 

works, we performed the matrix multiplications required in eqs (S10) and (S17) using loops over L and Nconf. Note 

that this procedure uses indirection to perform the matrix multiplication. In the present work, we decided to 

optimize the matrix multiplication step by using the subroutine dcsrmv from the Intel® MKL library,3 which allows 

highly efficient multiplication of sparse matrices compressed in the CSR column format. The MKL implementation of 

our present program runs between 30% and 260% faster (depending on the parameters of the calculation and the 

computational architecture) than an implementation using the previous method for matrix multiplication.   

 

1.2 Determination of the Poor Solvent Coefficients, g(i,i') 

The function g(|r – r’|) determines the distance dependence of the VdW interactions in the theory. We model 

this dependence with the attractive branch of the Lennard-Jones potential with a cutoff of 2.5 , namely: 
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where a is the segment length (we used a = 0.5 nm). The discretization of g(|r – r’|) into the lattice results in the 

coefficients g(i,i’), which are required to calculate eq (S5). This coefficients are obtained by integration of g(|r – r’|): 

if we denote the x and y coordinates of cells i and i' in the two dimensional lattice as (ix, iy) and (ix’, iy’), respectively, 

then g(i,i') is given by: 
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with 
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2 Numerical Confirmation that the Barriers in the MFEP are Saddle Points of the Free-Energy Functional 

In this section, we propose a method to confirm that the free-energy barriers of the MFEP found by the string 

method/molecular theory are actually saddle points of the free energy of the system. We have shown that taking 

 / , 0F P j     results in the following equation (eq (8) of the main text), 
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This equation is valid not only for the local minima of the free energy, but also for all other stationary points 

(saddle points); although in practice numerical solvers fail to find the saddle points (which are unstable) and provide 

always the local minima of F (the stable solutions).  We can now replace eq. (S21) into the free-energy functional of 

the system, eq (5) in the main text. Combining the resulting expression with the definition of the polymer number 

density (eq (2) in the main text), the packing constraint (eq (3) in the main text), the probability normalization 

constraint (eq (4) in the main text) and the definition of (r) (eq (7) in the main text) results in:4 
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where the superindex “stationary” denotes that this expression for the free energy is only valid in the stationary 

points of F, in contrast with the general expression given by eqs (1) and (5) in the main text that is always valid. 

Therefore, if we now plot F and Fstationary along the MFEP, we should find that Fstationary = F only for the points that are 
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saddle points or extrema of F. Figure S1 shows that this is actually what happens for the initial and final states (that 

are local free-energy minima) and for the barrier state of the MFEP which is, therefore, a saddle point of F.  

 

 

 

Figure S1: A. Free energy of the system, F, determined with eq (5) in the main text and free energy for the stationary points, 

Fstationary, given by eq (S22) as a function of the normalized arc-length of the string (same data as in Figure 3 of the main text). B. 

Difference between the free energies in A as a function of the normalized arc-length of the string.  
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