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Evaluation of real elongation in stretching process  
 

 
Fig. S1. (a) Photographs of the specimens with grids marked with 5.0 × 5.0 mm meshes in the 

undeformed state, and the states of planar and equibiaxial extension. (b) The relation of nominal 

elongation (λN) evaluated from the distance between the clamps and real elongation (λR) evaluated 

from the dimensional changes of the marked grids for equibiaxial (EB), planar (PE), and uniaxial 

(U) extension. 
 
 The grids marked with 5.0 × 5.0 mm meshes were sketched on the surface of the 

sheet specimens (70 × 70 × 2.0 mm) (Fig. S1a). The real elongation (λR) at the imposed 

deformation was evaluated from the dimensional changes of the marked grids. The value of 

λR at each deformation was obtained from the average of the values for several meshes. The 

stretching processes were recorded using a video camera, and the dimensional changes of the 

grids were measured using the Image J program 1.50i (National Institute of Health, USA.). 

The difference in local strain between different local sections was less than 3%, which 
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confirms the uniformity of the imposed strain field. A similar method was applied for 

uniaxial deformation (Fig. S1a) of the rectangular specimens (65 × 6.0 × 2.0 mm). Figure 

S1b illustrates the relations between λR and nominal elongation (λN), which is evaluated from 

the distance between the clamps, for each deformation. The real elongation, λR, tends to be 

smaller than λN in biaxial extension, while no appreciable difference between λR and λN is 

observed in uniaxial extension. The relation between λR and λN is common to planar and 

equibiaxial extension, and it is well approximated by the following equation:  

λR = 0.8288λN + 0.1712   (λN < 4) (S1) 

The real elongation λR is employed in the analysis of stress-strain data, i.e., λ ≡ λR. 

 The effective cross-section regarding the detected load in biaxial extension is 

estimated by comparing the values of the initial (small strain) modulus in uniaxial, planar, 

and equibiaxial extension (each of which is denoted as AU, APE, and AEB, respectively) on the 

basis of the linear elasticity theory.1 As the present specimens are assumed incompressible 

with good approximation,2 the relation is given by AU:APE:AEB =3:4:6. The effective 

cross-section for biaxial extension is determined from this ratio using the value of AU 

obtained in uniaxial extension with a definite value of cross-section.  

 The sufficient magnitude of gauge length (L0 ≈ 50 mm), which is given by the 

distance between the clamps, effectively minimizes the effect of the inhomogeneous strain 

field in the vicinity of the clamps, because the area of the inhomogeneous strain field 

becomes negligibly small relative to that of the uniform strain field. 

 Effect of filler content (ϕ) on residual strain  

 Figure S2 displays the effect of filler content (φ) on the residual strain in reloading 

εr
r in uniaxial (U), equibiaxial (EB), and planar (PE) extension with λm=1.46 and 2.90. 

Residual strain εr
r slightly increases with an increase in φ in each extension with λm=1.46 and 

2.90, although the values of εr
r are small, i.e., less than 0.1. When compared at the same φ, εr

r 

increases in the order of EB, PE and U.          
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Fig.S2. Residual strain in reloading, εr

r, as a function of φ (volume fraction of filler) at λm=1.46 (a) 

and 2.90 (b) in uniaxial (U), equibiaxial (EB) and planar (PE) extension.  
Effect of Silane-coupling agent (SCA) on residual strain and energy dissipation 

Figure S3 shows the residual strains, εu
r and εr

r, for each type of extension as a 

function of λm for the specimen without SCA (φ = 0.21). Similarly to the specimen with SCA 

(φ = 0.21) , εr
r is smaller than εu

r when compared at the same λm, because a finite degree of 

strain recovery occurs as a result of the recovery or rearrangement of the filler-network 

structure during the equilibration time (30 min) after complete unloading.3,4 Both εu
r and εr

r 

increase with an increase in λm for each type of extension. Residual strains are insensitive to 

type of deformation.   

 
Fig. S3. The residual strains, εu

r and εr
r, in the stretching direction, evaluated from unloading and 

reloading processes, respectively, as a function of λm in uniaxial (U), planar (PE), or equibiaxial (EB) 

extension for SBR/silica without SCA of φ = 0.21. 

   Figures S4a and S4b illustrate Du and Dr, respectively, as a function of λm for each type of 
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extension for the specimen of φ = 0.21 with and without SCA. The results show that Du is 

larger than Dr at the same λm, which is primarily because the stress in reloading is larger than 

that in unloading at the same λ due to the relation of εu
r > εr

r. Both Du and Dr increase with an 

increase in λm for all types of deformation. Furthermore, both Du and Dr are sensitive to the 

type of deformation: When compared at the same λm, EB shows the highest values, followed 

by PE, with U having the lowest. In general, both Du and Dr of the specimen without SCA are 

quite larger than the specimen without SCA, especially in the small in formation.        

 

Fig. S4. Comparison of energy dissipation of (a) unloading (Du) and (b) reloading (Dr) processes as a 

function of λm for SBR/silica of φ = 0.21 with and without SCA. The insets show the data in the small 

λm regime. 
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