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Obtaining Transport Equations from the Rayleighian

In this section, we show how the Rayleighian specified in the main manuscript produces the

transport equations in Equations 18–21. Substituting Equations 11, 12 and 17 into Eq. 6

gives the fully specified Rayleighian for the ternary multi-fluid model,

R[{vi}] =

∫
dr

[ p,n,s∑
i

ζi
2

(vi − vm)2 +
1

2
σ(v) : ∇v

−p (∇ · v) +

p,n∑
i

φivi · ∇µi
]
.

(1)
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Component force balances are given by stationary values of the functional derivatives of the

Rayleighian (i.e., the Euler-Lagrange equations),

δR

δvi
=
∂R
∂vi
−∇ · ∂R

∂∇vi
= 0 (2)

where R is the integrand of the Rayleighian. Taking these functional derivatives and sub-

stituting Equations 4 and 14 to eliminate v and vm yields,

δR

δvp
=
ζpζn
ζ

(vp − vn) +
ζpζs
ζ

(vp − vs)− φp∇ · σ(v) + φp∇p+ φp∇µp (3)

δR

δvn
=
ζpζn
ζ

(vn − vp) +
ζnζs
ζ

(vn − vs)− φn∇ · σ(v) + φn∇p+ φn∇µn (4)

δR

δvs
=
ζpζs
ζ

(vs − vp) +
ζnζs
ζ

(vs − vn)− φs∇ · σ(v) + φs∇p. (5)

The total momentum equation is readily obtained by summing Equations 3 through 5,

0 = −∇p+∇ · σ(v) −
p,n∑
i

φi∇µi. (6)

This equation can be more compactly written by introducing the osmotic stress tensor,S1–S4

∇ ·Π =

p,n∑
i

φi∇µi (7)

which gives

0 = −∇p+∇ · σ(v) −∇ ·Π. (8)

Component diffusion equations can be obtained by combining Equations 3 through 5

with the conservation of mass expression in Eq. 2. We define the diffusive flux of component

i as,

ji = φi (v − vi) (9)
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which allows us to re-write Eq. 2 as,

∂φi
∂t

+ v · ∇φi = ∇ · ji. (10)

Substituting the definition of the friction coefficient from Eq. 15 into Equations 3–5 and

using the definition of diffusive flux gives,

jp = v0ζ
−1
0

[
−φp∇ · σ(v) + φp∇p+ φp∇µp

]
(11)

jn = v0ζ
−1
0

[
−φn∇ · σ(v) + φn∇p+ φn∇µn

]
(12)

js = −v0ζ
−1
0

[
φs∇ · σ(v) + φs∇p

]
(13)

To isolate the diffusive flux, we eliminate the pressure terms from Equations 11–13 by per-

forming the operations,

jp(φn + φs)− φp(jn + js) (14)

jn(φp + φs)− φn(jp + js) (15)

and use the fact that (i)

p,n,s∑
i

φi = 1 and (ii)

p,n,s∑
i

ji = 0. With these manipulations, Eq. 10

becomes,

∂φp
∂t

+ v · ∇φp =
v0

ζ0
∇ ·
[
φp(1− φp)∇µp − φpφn∇µn

]
(16)

∂φn
∂t

+ v · ∇φn =
v0

ζ0
∇ ·
[
− φpφn∇µp + φn(1− φn)∇µn

]
(17)

which are more compactly written matrix notation as

∂φi
∂t

+ v · ∇φi = ∇ ·

(
p,n∑
j=1

Mij∇µj

)
(18)
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where we have introduced the component mobility matrix

Mpp =
v0

ζ0
φp(1− φp) (19)

Mpn = Mnp = −v0

ζ0
φpφn (20)

Mnn =
v0

ζ0
φn(1− φn). (21)

The gradient of the chemical potential appears in both Equations 8 and 18. Taking the

requisite functional derivatives per the definition in Eq. 10 yields,

µi =
kBT

v0

(
∂f0
∂φi
− κi∇2φi

)
(22)

where ∂f0/∂φi is the derivative of the homogeneous free energy in Eq. 8 with respect to

volume fraction of component i. Taking the gradient and using the chain rule gives a chemical

potential gradient with explicit volume fraction terms,

∇µi =
kBT

v0

p,n∑
j

[
Hij∇φj −Kij∇∇2φj

]
(23)

where

Hpp = (Npφp)
−1 + (Nsφs)

−1 − 2χps (24)

Hpn = Hnp = (Nsφs)
−1 + χpn − χns − χps (25)

Hnn = (Nnφn)−1 + (Nsφs)
−1 − 2χns (26)

is the Hessian matrix, and

Kpp = κp (27)

Kpn = Knp = 0 (28)
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Table S1: Characteristic Scales

Scale Expression Description

R bN
1/2
r end-to-end distance of the reference polymer

τ N2
r ηrv0/kBT Rouse time of reference polymer

p∗ ηr/τ viscous stress scale

Knn = κn (29)

is the matrix of gradient coefficients. Substituting Eq. 23 into Equations 8 and 18 gives,

−∇p+∇ · σ(v) =
kBT

v0

p,n∑
i,j

φi
(
Hij∇φj −Kij∇∇2φj

)
(30)

∂φi
∂t

+ v · ∇φi =
kBT

v0

∇ ·

[
p,n∑
j,k

Mij

(
Hjk∇φk −Kjk∇∇2φk

)]
. (31)

With a fully specified model, we seek to write Equations 30 and 31 in dimensionless form.

We define the characteristic length scale to be

R = bN1/2
r (32)

the end-to-end distance of a reference polymer of length Nr. The characteristic time scale is

set to the Rouse time in a solution with a reference viscosity ηr,

τ =
N2
r ηrv0

kBT
(33)

and the characteristic pressure scale is set to be

p∗ = ηr/τ . (34)

These characteristic scales are summarized in Table S1.
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Using the definitions of R, τ and p∗, the momentum equation from Eq. 30 becomes,

−∇̃p̃+ ∇̃ · σ̃(v) =
kBT

v0

τ

ηr

p,n∑
i,j

φi

(
Hij∇̃φj −KijR

−2∇̃∇̃2φj

)
=Nr

p,n∑
i,j

φi

[
(NrHij)∇̃φj − (NrR

−2Kij)∇̃∇̃2φj

]
(35)

where ∇̃ = ∇R, p̃ = p/p∗ and σ̃(v) = σ(v)/p∗. Similarly, the diffusion equation becomes,

∂φi

∂t̃
+ ṽ · ∇̃φi =

kBT

v0

τ

R2
∇̃ ·

[
p,n∑
j,k

Mij

(
Hjk∇̃φk −R−2Kjk∇̃∇̃2φk

)]

=∇ ·

{
p,n∑
j,k

(
ηrb

−2Mij

) [
(NrHjk)∇φk −

(
NrR

−2Kjk

)
∇∇2φk

]}
(36)

where t̃ = t/τ , ṽ = vτ/R. The non-dimensionalization procedure suggests that we define

a dimensionless gradient coefficient κ̃i = NrR
−2κi, a dimensionless mobility matrix M̃ij =

ηrb
−2Mij and a re-scaled Hessian matrix H̃ij = NrHij, which appear in Equations 22–24.

Finally, note that the Peclet number, which would normally appear before the diffusion

term in Eq. 36 is equal to unity. This is a consequence of the fact that all of the convec-

tive flows in the system are internally generated. If there had been boundary conditions

prescribing alternate length and time scales, it would have been possible to obtain Pe 6= 1.

However, the capillary number does appear in Eq. 35. Here there are two energy scales;

surface energy is characterized by kBT and viscous energy by ηrR
3/τ . This means that the

capillary number

Ca = N−1
r (37)

is fixed by the reference degree of polymerization and is a consequence of the way that the

surface forces and viscous forces scale with the reference length scale. At the monomer length

scale, Nr = Ns ≈ 1 and Ca ≈ 1. However, zooming out to the scale of the polymer radius of

gyration, Nr = Np, Ca = N−1
p and the surface tension forces are much stronger.
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Ternary Phase Diagram

For fixed Ni and χij, the homogeneous free energy in Eq. 8 can be used to produce a ternary

phase diagram consisting of (i) a binodal, (ii) a spinodal and (iii) a critical point.

The binodal curve is typically obtained by equating the chemical potentials of each species

in both phases. Because f0 is an intrinsic quantity, it is convenient to use an equivalent

formalism where we equate the exchange chemical potentials

µi =
∂f0
∂φi

(38)

and the osmotic pressure

Π = f0 −
∑
i

φiµi (39)

in each phase.S5 Substituting Eq. 8 into Equations 38 and 39 and assuming pseudo-binary

parameters, gives

1

N
ln

(
φαp

φβp

)
− ln

(
1− φαp − φαn
1− φβp − φβn

)
+ χ

(
φαn − φβn

)
= 0 (40)

ln

(
φαn

φβn

)
− ln

(
1− φαp − φαn
1− φβp − φβn

)
+ χ

(
φαp − φβp

)
= 0 (41)

ln

(
1− φαp − φαn
1− φβp − φβn

)
+
(
φαp − φβp

)(
1− 1

N

)
− χ

(
φαpφ

α
n − φβpφβn

)
= 0 (42)

With four unknowns (φαp , φαn, φβp , φβn), these three equations define the binodal curve in

composition space for a given χ and N .

The spinodal is calculated by setting the determinant of the Hessian matrix in Eq. 23 to

zero,

Z ≡

∣∣∣∣∣∣∣
Hpp Hnn

Hpn Hnp

∣∣∣∣∣∣∣ = 0 (43)
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and the critical point is given when both Eq. 43 and

∣∣∣∣∣∣∣∣
∂Z

∂φp
Hnn

∂Z

∂φn
Hnp

∣∣∣∣∣∣∣∣ = 0 (44)

are satisfied.S6–S8 Both equations are straightforward to generate, but too long to conve-

niently reproduce here.

Without further approximation, the solution to all three equations require numerical

methods. For this paper, we compute the phase diagram using a custom code in Python.

We find the critical point by simultaneously solving Equations 43 and 44. We then solve

Eq. 43 from φs = 0 to the critical point, resolving the two branches of the spinodal. Finally,

we compute the two branches of the binodals by first computing the phase co-existence point

for a binary system (φs = 0), and then solve Eq. 40- 42 marching φαp from the polymer-rich

solution of the binary problem to the critical point. Unlike Yilmaz and McHugh,S7 we

did not need to resort to a least-squares method to avoid the trivial solution. Rather,

we used scipy’s optimize.fsolve() function with an analytical Jacobian and a first-order

continuation method to obtain initial guesses.

Theory of a 1D interface

The concentration profiles for our model can be found by minimizing the interfacial free

energy,

γ[φp, φn] = F [φp, φn]− kBT

V

∫
dr feq(φp, φn) (45)

of a two phase system where the α-phase {φαp , φαn} at the left boundary, x = −∞, is in

equilibrium with the β-phase {φβp , φβn} at the right boundary, x = ∞. F [φp, φn] is the free
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energy functional given in Eq. 7 and

feq(φp, φn) = f0(φ
α
p , φ

α
n) + (φp − φαp )µp(φ

α
p , φ

α
n) + (φn − φαn)µn(φαp , φ

α
n) (46)

is the equilibrium free energy absent any interfaces. Note that the choice of the α-phase for

Eq. 46 is arbitrary and the µi that appear are the exchange chemical potentials.

There are two barriers to obtaining analytical results for the interfacial profiles described

by Eq. 45. The first is that γ[φp, φn] describes the profiles of both φp(r) and φn(r), requiring

a simultaneous solution to two Euler-Lagrange equations. To avoid this, we assume that

the solvent concentration is constant, φs ≈ φ̄s, making the model truly binary (φ = φp,

φn = 1 − φ − φ̄s). In general, the solvent concentration is not truly constant between both

phases, since the solvent may partition unequally as well as concentrate at the polymer/non-

solvent interface. However, this effect is small enough to neglect in the strong segregation

limit, which we justify below.

Assuming a binary system, and using the notation for the pseudo-binary parameters

given above, we re-write Eq. 45 for a 1D interface as,

γ[φ] =
kBT

b2

∫
dx

b

[
∆f(φ) +K(φ̇)

]
(47)

where

∆f(φ) = f0(φ)− f0(φα)− (φ− φα)µ(φα) (48)

K(φ̇) = κ φ̇2 (49)

and

f0(φ) =
φ

N
lnφ+

(
1− φ− φ̄s

)
ln
(
1− φ− φ̄s

)
+ φ̄s ln φ̄s + χφ

(
1− φ− φ̄s

)
(50)
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with µ = ∂f0/∂φ. Eq. 47 has a Lagrangian form, which immediately implies that

φ̇(x) =

[
∆f(φ)

κ

]1/2
(51)

The second barrier to progress is the appearance of logarithmic terms in Eq. 50. To

surmount this barrier, we assume that the phases are strongly segregated (χ � 1 and

N � 1) and use perturbation theory.S5 Expanding f0(φ) in this limit allows us to find the

equilibrium concentrations, φα and φβ. Equating exchange chemical potentials, µα = µβ,

and osmotic pressures, Πα = Πβ, for the pseudo-binary model in both phases gives,

1

χN
ln

(
ϕα

ϕβ

)
− 1

χ
ln

(
1− ϕα

1− ϕβ

)
− 2

(
1− φ̄s

) (
ϕα − ϕβ

)
= 0 (52)

1

χ
ln

(
1− ϕα

1− ϕβ

)
+
(
ϕα − ϕβ

)( 1

χ
− 1

χN

)
+
(
1− φ̄s

) [
(ϕα)2 − (ϕβ)2

]
= 0 (53)

where we have introduced the reduced volume fraction

ϕν = φν/
(
1− φ̄s

)
(54)

such that ϕ ∈ [0, 1] for ν ∈ [α, β].

Assuming that ϕα ≈ εα and ϕβ ≈ 1− εβ, Eq. 52 and Eq. 53 reduce to,

1

χN

(
ln εα + εβ

)
+

1

χ

(
εα + ln εβ

)
− 2

(
1− φ̄s

) (
εα + εβ − 1

)
= 0 (55)

− 1

χ

(
εα + ln εβ

)
+
(
εα + εβ − 1

)( 1

χ
− 1

χN

)
+
(
1− φ̄s

) [
(εα)2 − (1− εβ)2

]
= 0 (56)

where we have used the Taylor expansion ln(1 − ε) ≈ −ε when appropriate. The largest

term in Eq. 55–56 are of O(ln ε), so we can neglect terms of O(ε). Doing so and re-arranging
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gives,

εα = exp
[
−χN(1− φ̄s)

]
(57)

εβ = exp
[
−χ(1− φ̄s)

]
(58)

to leading order when χ � 1 and N � 1. It can be shown using a similar perturbation

expansion of the phase equilibrium equations for the full ternary model, that the solvent

concentration is constant at O(ln ε), justifying the pseudo-binary assumption.

Fully solving Eq. 51 for the interfacial profile requires numerical methods, but, we can

obtain an expression for the interfacial width regardless. A characteristic interfacial width

can be defined as,S5,S9

l =
φβ − φα

φ̇(x = 0)
(59)

where we can substitute the right hand side of Eq. 51 for φ̇. Doing so requires an expression

for ∆f0, which can be obtained by combining Eq. 48 and Eq. 50,

∆f0(φ) =
φ

N
ln

(
φ

φα

)
+ (1− φ− φ̄s) ln

(
1− φ− φ̄s
1− φα − φ̄s

)
+

(
1− 1

N

)
(φ− φα)− χ (φ− φα)2 (60)

Assuming that ϕ = 1/2 at x = 0, and using the binodal curves described by Equations 57

and 58 gives the width in Eq. 52, where terms smaller than O( 1
χ
) and O( 1

χN
) have been

neglected.
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Linear Stability Analysis

We begin by neglecting hydrodynamics (set v = 0 everywhere) and linearizing Eq. 18 about

the homogeneous state {φ̄p, φ̄n},

∂

∂t
δφi =

∑
j,k

M̄ij

(
H̄jk∇2δφk −Kjk∇4δφk

)
(61)

where δφi = φi − φ̄i, and M̄ij and H̄jk indicate constant matrices evaluated at φ̄p and φ̄n.

Taking the Fourier transform gives,

∂

∂t
δφ̂i =

∑
j,k

(
−M̄ijH̄jk q

2 − M̄ijKjk q
4
)
δφ̂k (62)

which is useful, since the derivative operators can be simply expressed in Fourier space.

Eq. 62 is a system of linear, first order differential equations, which has a formal solution in

Fourier-space of

δφ̂i(q, t) =
∑
k

exp [Aik(q)t] δφ̂k(q, 0) (63)

where

Aik(q) = −
∑
j

(
M̄ijH̄jk q

2 + M̄ijKjk q
4
)

(64)

From Eq. 63 it is clear that φ̂(q, t) becomes unstable (thus precipitating spinodal decom-

position) when Aik(q) is no longer negative definite. By definition, Aik(q) is non-negative

definite when one eigenvalue is greater than or equal to zero for some value of q. This can

be made explicit by using a similarity transform of Aik, giving

δφ̂i(q, t) =
∑
j,k,l

Xij exp [Λjkt]X
−1
kl δφ̂l(q, 0) (65)
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where

Λjk =

λ+ 0

0 λ−

 (66)

and Xij are the eigenvalue and eigenvector matrices of Aik(q). Since Aik(q) is rank two, there

is a simple formula for the eigenvalues

λ± =
T
2
± (T 2 − 4D)

1/2

2
(67)

where T = tr[Aik(q)] and D = det[Aik(q)]. By inspection, T is always less than zero.

Therefore, λ+ can only be positive when D < 0, making D = 0 the stability criteria.

We can decompose this determinant into two terms: one that depends on the mobility

and one that depends on the equilibrium parameters alone,

det[Aik(q)] = − det(M̄ijq
2) det(H̄jk +Kjk q

2) (68)

It can be shown (and it is also physically intuitive) that the mobility matrix, M̄ij, is always

positive definite, and therefore it is only necessary to consider

det(H̄jk +Kjk q
2) = 0 (69)

for the stability analysis. This is re-assuring, since kinetics should not determine thermody-

namic stability.

Re-writing Eq. 69, ∣∣∣∣∣∣∣
H̄pp + κpq

2 H̄pn

H̄np H̄nn + κpq
2

∣∣∣∣∣∣∣ = 0 (70)

highlights its relationship with Eq. 43, proving that the preceding analysis generates the

spinodal curve when κp and κn are zero. When κp and κn are non-zero, a finite size system

is stabilized by the gradient free energy until a critical wavelength, 2π/qc, above which the
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system becomes unstable. The critical wavenumber is given by solving Eq. 70, which is a

bi-quadratic equation in q. Using the quadratic equation yields,

q2c = −
(
H̄pp

2κp
+
H̄nn

2κn

)
±

[(
H̄pp

2κp
− H̄nn

2κn

)2

+ 4
H̄pn

2κp

H̄np

2κn

]1/2
. (71)

Once unstable, the spinodal decomposition is dominated by the fastest growing mode,

qm, which is the mode that maximizes λ+(q). Using its definition in Eq. 67 and the definition

of the diffusivity matrix (Dij) and the gradient matrix (Bij) in Equations 56 and 28, we can

get an expression for λ+ in terms of Dij and Bij,

λ+ =− q2

2

[
(Dpp +Dnn) + (Bpp +Bnn)q2

]
(72)

+ q2
[{

(Dpp −Dnn) + (Bpp −Bnn)q2
}2

(73)

+ 4(Dpn +Bpnq
2)(Dnp +Bnpq

2)
]1/2

(74)

The fastest growing mode can be found by solving

dλ+
dq

∣∣∣
q=qm

= 0 (75)

Unfortunately, there is no convenient closed-form expression for qm for general parame-

ters, like there is for qc. However, Eq. 75 can be re-written in a more convenient form for

numerical root-finding

λ+
dT
dq
− dD
dq

= 0 (76)

which is valid so long as T 2 6= 4D. Additionally, if we assume that the mobility and gradient

matrices are scalars (Mij = Mδij and Kij = κδij), then Eq. 72 is greatly simplified. In this

case the fastest growing mode becomes,

q2m =
q2c
2

(77)
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which is equivalent to the relation between qm and qc for binary systems.S10

Finally, note that in addition to qm, one also obtains the rate of spinodal decomposition

from the preceding analysis. The rate is given by

λm ≡ λ+(qm) (78)

and has units of inverse time. For the case of scalar mobility and gradient matrices, one

obtains the simple expression

λm = Mκq4m (79)

Dynamic scaling

To ensure that the coarsening exponent is not a simulation artifact, we verify in Figure S1

that the polymer structure factor, S(q), and polymer density correlation function, g(r),

obey dynamic scaling at long times. Dynamic scaling requires the system to be self-similar,

and therefore the structure factor and the density correlation function should both collapse

to universal curves when scaled by some characteristic length, L. The structure factor has

units of length squared and the correlation function is dimensionless, so L−2S(Lq) and g(r/L)

should be universal at long times.

Figure S1(a) shows that the structure factor for {φp, φn} = {0.3, 0.65} (blue circles in

Figures 6 and 7) scaled by 〈q−1〉 for t ≥ 4096 collapses to a universal curve. Figure S1(b)

shows a similar collapse for the real-space correlation function, g(r/Rg) where Rg is the

location of the first zero of the unscaled g(r). The inset to Figure S1(b) shows the product

of Rg and 〈q〉, which approaches a steady value as t→∞. The latter plot demonstrates that

because the system is self-similar, either 〈q〉 or Rg can be used as a characteristic length.
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Figure S1: (a) Polymer structure factor versus wavevector, scaled by the first moment 〈q〉.
(b) Polymer density correlation function versus radial distance, r, scaled by Rg, the first zero
of g(r). (inset to b) Product of Rg and 〈q〉 as a function of time, showing the equivalence
of each measure of the domain size to within a constant value at long times. Data are from
the one of the sets presented in Figures 6 and 7 (closed blue circles, diffusion only) with
parameters: N = 20, χ = 0.973, κ = 2, {φp, φn} = {0.3, 0.65}.
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