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1. PROBLEM FORMULATION

We consider a slender filament of length L and uniform radius r such that r � L and assume the filament is
elastic and inextensible. The deformation of the filament is assumed to be confined to the x-y plane. We define the
position vector of a material point on the filament neutral line relative to the laboratory frame as x(s, t), where s is
the arclength along the filament with s ∈ [0, L] and t represents time. It is convenient to describe the geometry by the
local tangent angle made with the x axis as ψ(s, t) such that xs = cosψex + sinψey, where the subscript s denotes
the derivative with respect to s, namely xs ≡ ∂sx. See Fig. 1 in the main text for a schematic illustration.

The local unit tangent and normal vectors on the flagellum neutral line are defined as t and n respectively, with
t = xs. The local geometry is thus characterized by the Frenet-Serret formulas:

ts = xss = κn, ns = −κt, (1.1)

where κ = ‖xss‖ = ψs is the local curvature.
We write the energy functional of the filament as [1, 2]

E =

∫ L

0

[
1

2
A(s)κ2 +

1

2
σ(x2

s − 1)

]
ds, (1.2)

where A(s) = E(s)I is the bending stiffness, with E(s) the Young’s modulus and I the second moment of inertia of 
the cross-section. The local inextensibility is enforced by the Lagrangian multiplier function σ(s, t). We emphasize 
that in this work the bending stiffness is varying along the filament, A = A(s), rather than uniform as has been done in 
previous studies. In the following, we closely follow the derivation given by Camalet and Jülicher [3] except that non-
uniform stiffness distributions are allowed.

The variation of E with respect to a variation δx of the position vector x reads

δE =

∫ L

0

[Aκδκ+ σxs · δxs] ds. (1.3)

Using the relation δκ = δ‖xss‖ = δ
(√

x2
ss

)
= n · δxss, we have

δE =

∫ L

0

[Aκn · δxss + σxs · δxs] ds. (1.4)

Upon integration by parts we obtain

δE =
[
Aκn · δxs

]s=L
s=0
−
[
∂s (Aκn) · δx

]s=L
s=0

+
[
σxs · δx

]s=L
s=0

+

∫ L

0

∂s [∂s(Aκn)− σxs] · δxds. (1.5)

The last term in Eq. (1.5) can be written as∫ L

0

∂s
[
∂s(Aκ)n− (Aκ2 + σ)t

]
· δxds, (1.6)
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with the relation ∂s(Aκn) = ∂s(Aκ)n − Aκ2t. The elastic force density is therefore given by [4]

felastic = −∂s
[
∂s(Aκ)n− τt

]
, (1.7)

where we have defined τ = σ +Aκ2, which represents the physical tension along the filament.
The boundary terms obtained from the variation δE are given by[

Aκn · δxs
]s=L
s=0

+
[
[−∂s(Aκ)n + τt] · δx

]s=L
s=0

, (1.8)

which represent external forces and torques applied at the two ends. Therefore, at the distal end (s = L),

Text = Aκ, Fext = τt− ∂s(Aκ)n, (1.9)

and at the leading end (s = 0),

Text = −Aκ, Fext = −τt + ∂s(Aκ)n. (1.10)

Since a slender filament is considered, the resistive force theory is employed to describe the hydrodynamics. The
local viscous force distribution is given by

fvis = −(ξ⊥nn + ξ‖tt) · xt, (1.11)

where the tangential and normal resistive coefficients are given by ξ‖ and ξ⊥ respectively. Neglecting the inertia of
the filament, the elastic force has to balance the viscous force exerted by the surrounding fluids locally, i.e.

fvis + felastic = 0. (1.12)

Substituting the expressions of the viscous (Eq. 1.11) and elastic (Eq. 1.7) forces, the equation of motion is given by

xt =
1

ξ⊥
n
(
−∂2s (Aψs) + ψsτ

)
+

1

ξ‖
t (ψs∂s(Aψs) + τs) , (1.13)

with κ =ψs. We employ the relations tt =ψtn, ns = −ψst, and ts = xss =ψsn and take the derivative of Eq. (1.13) with 
respect to s to obtain

ψtn =
1

ξ⊥
(−ψst)

(
−∂2s (Aψs) + ψsτ

)
+

1

ξ‖
t∂s (ψs∂s(Aψs) + τs) (1.14)

+
1

ξ⊥
n∂s

(
−∂2s (Aψs) + ψsτ

)
+

1

ξ‖
ψsn (ψs∂s(Aψs) + τs) . (1.15)

From the tangential balance of Eq. 1.15, we obtain the governing equation for the tangent angleψ (s, t),

ψt =
1

ξ⊥

(
−∂3s (Aψs) + ∂s(ψsτ)

)
+

1

ξ‖
ψs (ψs∂s(Aψs) + τs) . (1.16)

From the normal balance of Eq. 1.15, we obtain a differential equation for tension τ ,

τss −
ξ‖

ξ⊥
ψ2
sτ = −∂s(ψs∂s(Aψs))−

ξ‖

ξ⊥
ψs∂

2
s (Aψs), (1.17)

which equivalently enforces the inextensibility condition xs · xst = t · tt = 0.

x(s, t) = x(0, t) +

Eqs. (1.16) and (1.17) determine the filament dynamics. The filament shape can be recovered by integration:∫ s
[cosψex + sinψey]ds′, (1.18)

0

where x(0, t) can be obtained from Eq. (1.13) by integration with respect to time and evaluating at s = 0.
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2. BOUNDARY CONDITIONS

We consider the case of a clamped filament with sinusoidal displacement at one end (s = 0).
The clamped boundary condition is given by ψ(0, t) = 0 while the actuation boundary condition at s = 0,

(2.1)y(0, t) = y0 sin ωt,

is implemented through the equation of motion, Eq. (1.13), evaluated at s = 0:

y0ω cosωtey =
1

ξ⊥
n (−∂ss(Aψs) + ψsτ) +

1

ξ‖
t (ψs∂s(Aψs) + τs) . (2.2)

The normal and tangential components of the equation, respectively, lead to the conditions

−∂2s (Aψs) + ψsτ = ξ⊥y0ω cosωt cosψ, (2.3)

ψs∂s(Aψs) + τs = ξ‖y0ω cosωt sinψ, (2.4)

evaluated at s = 0. With the clamped boundary condition,ψ (0, t) = 0, Eqs. 2.3 and 2.4 become

−∂2s (Aψs) + ψsτ = ξ⊥y0ω cosωt, (2.5)

ψs∂s(Aψs) + τs = 0. (2.6)

The other end of the filament is free, and the force-free and torque-free conditions dictate that τ = 0, ψss = 0, and
ψs = 0 at s = L.

To summarize, the boundary conditions at the two ends are:

ψ(0, t) = 0, [ψs∂s(Aψs) + τs]s=0 = 0,
[
−∂2s (Aψs) + ψsτ

]
s=0

= ξ⊥y0ω cosωt, (2.7)

τ(L, t) = 0, ψss(L, t) = 0, ψs(L, t) = 0. (2.8)

The system of partial differential equations can now be solved with the above six boundary conditions.

3. DIMENSIONLESS GROUPS

We non-dimensionalize the equations by scaling length with L, time with ω−1, and force with a characteristic viscous
force magnitude L2ξ⊥ω. The resulting dimensionless groups (characteristic sperm number, dimensionless amplitude
and drag anisotropy ratio) are given by

Sp0 = L

(
ξ⊥ω

A0

)1/4

, ε =
y0
L
, γ =

ξ⊥
ξ‖
, (3.1)

where A0 is a characteristic bending stiffness.

4. SMALL AMPLITUDE ASYMPTOTICS

We seek small-amplitude (ε� 1) asymptotic solutions to the governing equations presented above.

A. Continuous stiffness distributions

In this section, we assume that A(s) is continuous and calculate the leading order solution to the tangent angle
and the propulsive force Fp. We assume regular perturbation expansions for ψ and τ :

= εψ(1) + ε2ψ(2) +O(ε3),

τ = τ (0) + ε2τ (2) +O(ε4), (4.1)

where odd terms in τ vanish due to symmetry. Substituting the series into Eq. (1.17), we obtain ∂ssτ (0) = 0 at order one. 
The corresponding boundary conditions can be readily obtained as τ (0)(L, t) = 0 and ∂sτ (0)(0, t) = 0, and hence
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the solution is given by τ (0)(s, t) = 0. As a result, tension is of O(ε2). Using Eq. (1.16), we obtain the leading order 
equation forψ ,

ψ
(1)
t +

1

ξ⊥
∂3s

(
Aψ(1)

s

)
= 0, (4.2)

with boundary conditions

ψ(1)
ss (L, t) = 0, ψ(1)

s (L, t) = 0, −∂2s (Aψ(1)
s )(0, t) = ξ⊥Lω cosωt, ψ(1)(0, t) = 0. (4.3)

Next, we calculate the time-averaged propulsive force

Fp = −

〈
ex ·

∫ L

0

fvisds

〉
, (4.4)

where the angle brackets denote time-averaging. We express Fp as a regular perturbation expansion,

Fp = ε2F (2)
p +O(ε4), (4.5)

where the odd terms in the series vanish due to the symmetry that the propulsive force should remain unchanged
under the transformation ε → −ε, or equivalently a phase shift of π of the actuation.

To leading order, the local tangent t ∼ ex + εψ(1)ey. Differentiating Eq. (1.18), we obtain the velocity vector as

u ∼
(
εLω cosωt+ ε

∫ s

0

∂tψ
(1)ds

)
ey. (4.6)

The propulsive force then scales as

ex · fvis = −ξ⊥ex · nn · u− ξ‖ex · tt · u,

∼ ε2(ξ⊥ − ξ‖)ψ(1)

(
Lω cosωt+

∫ s

0

∂tψ
(1)ds

)
, (4.7)

where we can use Eq. (4.2) to evaluate the integral∫ s

0

∂tψ
(1)ds = − 1

ξ⊥

[
∂2s

(
Aψ(1)

s

)
− ∂2s

(
Aψ(1)

s

)
(0, t)

]
= − 1

ξ⊥

[
∂2s

(
Aψ(1)

s

)
+ Lξ⊥ω cosωt

]
. (4.8)

As a result, the time-averaged propulsive force is given by

〈ex · fvis〉 ∼ ε2
ξ‖ − ξ⊥
ξ⊥

〈
ψ(1)∂2s

(
Aψ(1)

s

)〉
, (4.9)

or equivalently,

F (2)
p =

ξ⊥ − ξ‖
ξ⊥

〈∫ L

0

ψ(1)∂2s

(
Aψ(1)

s

)
ds

〉
. (4.10)

B. Segmented stiffness distributions

In this section, we consider segmented stiffness distribution (i.e. a step-function distribution), where we assume
different but constant stiffnesses for the segments at the actuation end, A1, and the distal end, A2, with the ratio of
stiffness denoted as β = A2/A1. The length of the segment at the driven end is given by αL with α ∈ [0, 1].

For this segmented case, we can split the local tangent and tension into separate functions for the two segments.

Denoting
(n)
k as the tangent angle of the k-th (k = 1, 2) segment at O(εn), we follow the same analysis in Sec. 4 A

to obtain the governing equations for the tangent angle of the two segments:

ξ⊥∂tψ
(1)
1 +A1∂

4
sψ

(1)
1 = 0,

ξ⊥∂tψ
(1)
2 +A2∂

4
sψ

(1)
2 = 0. (4.11)
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The corresponding boundary conditions are detailed in the main text.
The leading order velocity vector for the second segment reads

u2 ∼

(
εLω cosωt+ ε

∫ αL

0

∂tψ
(1)
1 ds+ ε

∫ s

αL

∂tψ
(1)
2 ds

)
ey (4.12)

and the expression for u1 takes the same form as Eq. (4.6). Evaluating the integrals∫ αL

0

∂tψ
(1)
1 ds+

∫ s

αL

∂tψ
(1)
2 ds = − 1

ξ⊥

[
A1∂

3
sψ

(1)
1 (αL, t) + Lξ⊥ω cosωt

]
− 1

ξ⊥

[
A2∂

3
sψ

(1)
2 −A2∂

3
sψ

(1)
2 (αL, t)

]
(4.13)

and employing the boundary condition A1∂
3
sψ

(1)
1 (αL, t) = A2∂

3
sψ

(1)
2 (αL, t), we have

u2 ∼
(
ε

1

ξ⊥
A2∂

3
sψ

(1)
2

)
ey. (4.14)

As a result, we obtain the propulsive force for the segmented case as

F (2)
p =

ξ⊥ − ξ‖
ξ⊥

〈
A1

∫ αL

0

(1)
1 ∂3sψ

(1)
1 ds+A2

∫ L

αL

(1)
2 ∂3sψ

(1)
2 ds

〉
, (4.15)

which upon integration by parts becomes

F (2)
p =

ξ⊥ − ξ‖
ξ⊥

1

2

〈
A1

(
∂sψ

(1)
1

)2
(0, t)−A1

(
∂sψ

(1)
1

)2
(αL, t) +A2

(
∂sψ

(1)
2

)2
(αL, t)

〉
. (4.16)

5. NUMERICAL APPROACH

A. Numerical solution for continuous stiffness distributions

The ODE for h(s), iSp4h+(Ahs)sss = 0, is a boundary value problem which is solved using Matlab’s built-in bvp4c 
solver for a given stiffness profile. As a validation of the algorithm, the numerical results for both uniform (A = 1) 
and two-segment stiffness distributions (approximated using hyperbolic tangent, see the main article, Sec. 3.3) match 
with the analytical solutions. Once the filament shape is obtained, the propulsive force can be evaluated by numerical 
integration here using Gauss-Legendre quadrature.

B. Numerical optimization

The optimization over polynomial and exponential stiffness distributions is performed using the fmincon solver in 
Matlab. For both linear and quadratic distributions, the optimization routine points to a limiting case where the 
boundary value problem (BVP) for h(s) has a singular point at s = 1, i.e., the stiffness at the free end goes to zero 
where the numerical solver itself cannot produce a solution. We then solved these two singular BVPs using the Matlab 
package BVPSUITE which can handle a singularity of the second kind [5–7].
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