Supporting information

Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles

Yan-Li Ji,^a Quan-Fu An,^a* Yao-Shen Guo,^a Wei-Song Hung,^b Kueir-Rarn Lee^b and Cong-Jie Gao^c

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China. Fax: +86-571-87953780. Tel.: +86-571-87953780; E-mail: <u>anqf@zju.edu.cn</u>.

^b R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chung-Li 32023, Taiwan.

^c The Development Center of Water Treatment Technology, Hangzhou 310012, China.

Fig. S1 Schematic diagram for preparing zwitterionic polyelectrolyte, ZPE.

Polyelectrolyte	C(1s)	N(1s)	O(1s)	S(2p)	°S/C	DMAPS mol%
ZPE0	73.56	9.02	17.42	0	0	0
ZPE1	74.79	5.02	17.59	2.59	0.0346	33.5
ZPE2	73.00	8.08	15.75	3.17	0.0434	42.8
ZPE3	69.06	5.55	20.93	4.47	0.0647	66.9

Table S1 Chemical composition of ZPE characterized with XPS.

^aS/C: molar ratio of sulfur to carbon in ZPE copolymers.

Fig. S2 Photographs of (a) aqueous CMCNa solution, (b) aqueous mixture of CMCNa and ZPE3, (c) ZPNP3 solid, and (d) 0.1 wt% aqueous ZPNP3 solution (pH = 12.0).

Fig. S3 FTIR spectra of CMCNa, ZPE3, and ZPNP3.

Fig. S4 (a) Zeta potential, and (b) particle size distribution of CMCNa, ZPNP1, ZPNP2, and ZPNP3 in 0.01 wt% aqueous solution at $25 \,^{\circ}$ C.

Fig. S5 FESEM morphology of (a) CMCNa, (b) ZPNP1, (c) ZPNP2, and (d) ZPNP3 in 0.005 wt% dispersion self-assembled on silicon wafers at 25 °C.

Fig. S6 Surface SEM morphology of (a) TFC, (b) TFN-ZPNP1, (c) TFN-ZPNP2, and (d) TFN-ZPNP3 membranes; cross-sectional SEM morphology of (e) TFC and (f) TFN-ZPNP3 membranes.

Fig. S7 Surface AFM morphologies of (a) TFC, (b) TFN-ZPNP1, (c) TFN-ZPNP2, and (d) TFN-ZPNP3 membranes.

Table S2 Chemical	composition	of TFC and	TFN-ZPNP	membranes	characterized	with
XPS.						

Membrane	C (%)	N (%)	O (%)	^a C/N	
TFC	76.6	14.21	9.18	5.39	
TFN-ZPNP1	76.66	12.95	10.39	5.92	
TFN-ZPNP2	76.94	12.94	10.12	5.95	
TFN-ZPNP3	77.02	12.93	10.05	5.96	

^aC/N: molar ratio of carbon to nitrogen in TFC and TFN-ZPNP membranes.

Fig. S8 Water contact angle and zeta potential of TFC and TFN-ZPNP membranes.

Fig. S9 Separation performance of TFC, TFC-CMCNa, TFN-PNP, and TFN-ZPNP3 membranes tested with pure water and $1g.L^{-1}$ aqueous Na₂SO₄ and NaCl solutions (pH = 7.0) at 25 °C and 0.6 MPa.

		Water			
Membranes	Salt selectivity	permeability	Testing condition	Ref.	
		(L.m ⁻² .h ⁻¹ .MPa ⁻¹)			
	28.4	100 7	1.0 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	This	
TEN-ZPINP3	28.4	109.7	0.6 MPa, 25 °C.	work	
TEC	22.7	57 5	1.0 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	This	
TFC	22.7	57.5	0.6 MPa, 25 °C.	work	
	6.5	35.0	2.0 g.L ⁻¹ MgSO ₄ / NaCl solution	1	
PIP/ TIVIC			0.3 MPa, 25 °C.	T	
	5.4	16.0	2.0 g.L ⁻¹ MgSO ₄ / NaCl solution	1	
PPD/ TNIC			0.3 MPa, 25 °C.	1	
		75.0	1.0 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	2	
PIP-AEPPS/ TIVIC	24.0	/5.8	0.6 MPa, 25 °C.		
	3.5	40.5	0.8 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	3	
PIP-IIIIVISIN/ TIVIC			0.6 MPa, 25 °C.		
	10 F	24.0	1.0 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	4	
PAIVIAIVI/SIO ₂ -TIVIC	12.5	24.0	0.5 MPa, 25 °C.	4	
TEOA-MWCNT/	-	7.8	0.8 g.L ⁻¹ Na ₂ SO ₄ solution	-	
TMC			0.6 MPa, 25 °C.	5	
	5.2	4.6	2.0 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	6	
			1.4 MPa, 23 °C.	0	
	4.0	14.7	$2.0 \text{ g.L}^{-1} \text{ MgSO}_4 / \text{NaCl solution}$	7	
			1.5 MPa, 15 °C.	,	
Decol 5	12.5	47.1	1.0 g.L ⁻¹ MgSO ₄ / NaCl solution	8	
Desal-5			1.0 MPa, 25 °C.		
	15.0	17 3	1.0 g.L ⁻¹ MgSO ₄ / NaCl solution	Q	
010-00	15.0	47.5	1.0 MPa, 25 °C.	0	
NS-300	13.6	10.3	5.0 g.L ⁻¹ Na ₂ SO ₄ / 1.0 g.L ⁻¹ NaCl	0	
		49.3	solution 1.4 MPa, 25 °C.	5	
NF-40	11.0	43.0	1.0 g.L ⁻¹ MgSO ₄ / NaCl solution	9	
			1.0 MPa, 25 °C.		
	15.0	71.7	$1.0 \text{ g.L}^{-1} \text{ MgSO}_4 / \text{NaCl solution}$	10	
NI 70			0.6 MPa, 25 °C.		
NTR-7250	25.0	62.5	1.0 g.L ⁻¹ MgSO ₄ / NaCl solution	8	
	23.0		1.0 MPa, 25 °C.		
NTR-7450	61	92.0	1.0 g.L ⁻¹ Na ₂ SO ₄ / NaCl solution	10	
	0.1	52.0	1.0 MPa, 25 °C.		

Table S3 Comparison of mono/divalent salt selectivity and water permeability ofdifferent polyamide membranes in the literature and this work.

References

- 1 Y. J. Song, F. Liu and B. H. Sun, J. Appl. Polym. Sci. 2005, 95, 1251.
- 2 Q. F. An, W. D. Sun, Q. Zhao, Y. L. Ji and C. J. Gao, J. Membr. Sci., 2013, 431, 171.
- 3 H. Q. Wu, B. B. Tang and P. Y. Wu, J. Membr. Sci., 2013, 428, 341.
- 4 L. M. Jin, S. L. Yu, W. X. Shi, X. S. Yi, N. Sun, Y. L. Ge and C. Ma, *Polymer*, 2012, **53**, 5295.
- 5 H. Q. Wu, B. B. Tang and P. Y. Wu, J. Phys. Chem. C 2010, **114**, 16395.
- 6 E. S. Kim and B. I. Deng, J. Membr. Sci., 2011, **375**, 46.
- 7 S. Bano, A. Mahmood, S. J. Kim and K. H. Lee, J. Mater. Chem. A, 2015, **3**, 2065.
- 8 L. P. Raman, M. Cheryan and N. Rajagopalan, *Chem. Eng. Prog.* 1994, **3**, 68.
- 9 R. J. Petersen, J. Membr. Sci., 1993, 83, 81.
- 10 C. J. Gao, S. C. Yu, J. F. Zhang, H. R. Cai, *Membr. Sci. Technol.* 1999, **19**, 1.