Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Fig. S1 Histograms showing the particle size distributions of nanoporous (a) Pd₂₁@Pt₇₉, (b) Pd₂₇@Pt₇₃, (c) Pd₃₈@Pt₆₂, and (d) Pd₅₅@Pt₄₅ particles.

Fig. S2 TEM images of the nanoporous (a) $Pd_{21}@Pt_{79}$, (b) $Pd_{27}@Pt_{73}$, (c) $Pd_{38}@Pt_{62}$, and (d) $Pd_{55}@Pt_{45}$ particles.

Fig. S3 High resolution XPS spectra of nanoporous $Pd_{27}@Pt_{73}$ particles on (a) Pt 4*f* and (b) Pd 3*d*.

Fig. S4 SEM image of the sample prepared in the absence of F127.

Fig. S5 (a) SEM image, (b) TEM image, (c) histogram of particle size distribution, and (d) low-angle pattern of $Pd_{73}@Pt_{27}$ particles prepared at a molar ratio of Pd/Pt=67/33. Inset image in the panel (b) shows SAED pattern of the individual particle.

Fig. S6 SEM image of nanoporous Pt particles prepared in the absence of Pd precursor.

Fig. S7 SEM images of Pd₂₇@Pt₇₃ particles prepared by different amount of KBr ((a) 0 mg, (b) 100 mg, and (c) 300 mg).

Fig. S8 (a) Cyclic voltammograms and (b) chronoamperometric curves (recorded at 0.6 V) of the nanoporous Pd₂₇@Pt₇₃, Pd₃₈@Pt₆₂, Pd₅₅@Pt₄₅ particles obtained in 0.5 M H₂SO₄+0.5 M CH₃OH.

Table S1. Comparsion of the activity of nanoporous $Pd_{27}@Pt_{73}$ particles with previous reported Pt-based catalysts.

Sample names	Electrolytes	Scan rate	Mass activity	Reference
		(mV s ⁻¹)	(mA mg ⁻¹ _Pt)	
Nanoporous Pd ₂₇ @Pt ₇₃ particles	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	50	490	Present work
Dendritic Au@Pt nanoparticles	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	50	120	[S1]
Ag@Pt nanoparticles	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	50	150	[82]
Pd@Pt nanparticles	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	50	376	[S3]
Pd@Pt nanoparticles	0.1 M HClO ₄ +0.5 M CH ₃ OH	50	<i>ca.</i> 350	[S4]
Nanoflower Pt ₃ Co	0.1 M HClO ₄ +1.0 M CH ₃ OH	50	385.1	[85]
PdPt alloy nanoparticles/Graphite	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	20	460.2	[S6]
Octahedra PtAg alloy	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	50	<i>ca.</i> 350	[87]
Hollow Pd@Pt nanoparticles	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	50	500	[S8]
TeCuPt nanowires	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	20	245	[89]
Pt ₁ Ni ₁ chain-like nanohybrids	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	50	136	[S10]
Hollow Pd@Pt nanoparticles	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	50	580	[S11]
Au@Pd@Pt nanoparticles	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	50	430	[S12]

Reference

- [S1] H. Ataee-Esfahani, L. Wang, Y. Nemoto, Y. Yamauchi, Chem. Mater., 2010, 22, 6310-6318.
- [S2] C. Li, Y. Yamauchi, Phys. Chem. Chem. Phys., 2013, 15, 3490-3496.
- [S3] H. Zhang, Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, C. Cai, J. Phys. Chem. C, 2010, 114, 11861-11867.
- [S4] Y. Kim, Y. W. Lee, M. Kim, S. W. Han, Chem. Eur. J., 2014, 20, 7901-7905.
- [S5] J. N. Zheng, L. L. He, C. Chen, A. J. Wang, K. F. Ma, J. J. Feng, J. Power Sources, 2014, 268, 744-751.
- [S6] G. Zhang, C. Huang, R. Qin, Z. Shao, D. An, W. Zhang, Y. Wang, J. Mater. Chem. A, 2015, 3, 5204-5211.
- [S7] G. T. Fu, R. G. Ma, X. Q. Gao, Y. Chen, Y. W. Tang, T. H. Lu, J. M. Lee, Nanoscale, 2014, 6, 12310-12314.
- [S8] S. Lai, C. Fu, Y. Chen, X. Yu, X. Lai, C. Ye, J. Hu, J. Power Sources, 2015, 274, 604-610.
- [S9] H. Li, C. Ren, S. Xu, L. Wang, Q. Yue, R. Li, Y. Zhang, Q. Xue, J. Liu, J. Mater. Chem. A, 2015, 3, 5850-5858.
- [S10] L. L. Wang, D. F. Zhang, L. Guo, Nanoscale, 2014, 6, 4635-4641.
- [S11] L. Wang, Y. Yamauchi, J. Am. Chem. Soc., 2013, 135, 16762-16765.
- [S12] L. Wang, Y. Yamauchi, Chem. Mater., 2011, 23, 2457-2465.