Supporting information

SFX as a Low-cost 'Spiro' Hole-Transport Material for Efficient Perovskite Solar Cells

Michal Maciejczyk^a, Aruna Ivaturi^a, Neil Robertson*^a

^aSchool of Chemistry and EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, Scotland EH93JJ, UK

Contents

NMR spectra	2
Cost estimation	9
Cyclic voltammetries of SFX derivatives	13
X-ray crystallography	14
Thermal properties	18
Bibliography	21

NMR spectra

Cost estimation

Cost estimation of SFX-MeOTAD was adapted from Petrus et al.¹

HTM	Steps	Reagents	Solvent	Workup	Cost	Commercial
		(\$/g)	(\$/g)	(\$/g)	(\$/g)	price
						(\$/g)
SBF	3				34.83-43.88	101.00-
						122.32
SFX	1	0.56	0	0.56	1.09	n/a
SFX-MeOTAD	3				16.87	n/a
Spiro-MeOTAD	6	6.14	2.06	83	91.67-	170-475
					108.43	
EDOT-OMeTPA	4	5.73	1.42	2	9.57	n/a

Table S1. Comparison of estimated materials cost for the synthesis of studied HTM and others.

Figure S1. Flowchart describing the synthesis of 1 gram of SFX-MeOTAD.

Table S2. Materials quantities and cost for the synthesis of SFX.

Chemical name	Weight	Weight	Weight	Price of	Material	Cost per
	reagent	solvent	workup	Chemical	cost	step
	(g/g)	(g/g)	(g/g)	(\$/kg)	(\$/g	(\$/step)
					product)	
9-Fluorenone	35.740			162.72	0.11	1.09
Phenol	186.643			97.6	0.36	
MeSO ₃ H	76.190			60.50	0.09	
NaOH			50	19.42	0.019	
Dichloromethane			997.5	11.16	0.22	
Silica gel			120	66.41	0.16	
МеОН			79	2.21	0.003	
EtOH			671	9.53	0.13	

Table S3. Materials quantities and cost for the synthesis of SFXTBr.

Chemical name	Weight	Weight	Weight	Price of	Material	Cost per
	reagent	solvent	workup	Chemical	cost	step
	(g/g)	(g/g)	(g/g)	(\$/kg)	(\$/g	(\$/step)
					product)	
Bromine	153.85			44.33	0.12	0.44
Dichloromethane		532		11.16	0.10	
Na2S2O3			50	57.8	0.05	
МеОН			475	2.21	0.02	
Chloroform			1192	2.6	0.05	
Ethanol			631	9.53	0.10	

Chemical name	Weight	Weight	Weight	Price of	Material	Cost
	reagent	solvent	workup	Chemical	cost	per step
	(g/g)	(g/g)	(g/g)	(\$/kg)	(\$/g	(\$/step)
					product)	
Sodium	6.227			277.30	0.18	15.34
t-butoxide						
Pd(OAc) ₂	0.048			44 499.40	0.22	
Tri-tert-	0.125			24 500.00	0.32	
butylphosphonium						
tetrafluoroborate						
Dimethoxydiphenylamine	9.816			5 584.94	5.75	
Toluene		86.7		4.08	0.04	
Ethyl acetate			269	3.63	0.10	
MgSO ₄			10	54.24	0.06	
Aceton			2 966	2.00	0.62	
Hexane			7 988	6.79	5.68	
Silica gel			286	66.41	2.00	
МеОН			1 584	2.21	0.37	

Cyclic voltammetries of SFX derivatives

Figure S2. Cyclic voltammetry traces at different scan rates of (a) SFX-TAD, (b) SFX-TCz, (c) SFX-TPTZ and (d) SFX-MeOTAD.

Figure S3. Plot of ipa (first) versus (scan rate)-2 for SFX-TAD (from 0.1 V/s to 0.7 V/s), SFXTCz (from 0.05 V/s to 0.7 V/s), SFX-TPTZ (from 0.025 V/s to 0.7 V/s) and SFX-MeOTAD (from 0.025 V/s to 1.0 V/s) from cyclic voltammograms.

Above plots illustrate that oxidation potentials are independent of scan rate SFX-TAD ($R^2= 0.995$), SFX-TCz ($R^2= 0.970$), SFX-TPTZ ($R^2= 0.993$) and SFX-MeOTAD ($R^2= 0.994$). Scan plots are consistent with the Radles-Sevcik; the anodic peak current increases with square root of the scan rate.

X-ray crystallography

Figure S4. Dihedral angle of SFX-MeOTAD, SFX-TPTZ and SFX-TCz.

Figure S5. Crystal packing and π *-* π *stacking of SFX-TPTZ (top) and SFX-TCz (bottom).*

	SFX-MeOTAD	SFX-TPTZ	SFX-TCz
Chemical formula	C ₈₁ H ₆₈ N ₄ O ₉	C ₇₆ H ₅₁ N ₄ OS ₄	C ₇₃ H ₄₄ N ₄ O
Formula weight	1241.39	1164.44	993.12
Data collection	CrysAlisPro	CrysAlisPro	CrysAlisPro
Structure refinement	ShelXL	CrysAlisPro	CrysAlisPro
Colour, habit	colourless, block	colourless, block	colourless, prism
Crystal size (mm)	0.40×0.08×0.03	0.41×0.09×0.04	0.19×0.16×0.10
Space group	P-1	C2/c	Pbca
a (Å)	10.5201(3)	35.5400(14)	9.5612(2)
b (Å)	16.2972(4)	9.8814(2)	23.4614(4)
c (Å)	20.9582(6)	36.3474(14)	46.6024(10)
α (°)	68.652(2)	90	90
β(°)	80.004(2)	119.018(5)	90
γ (°)	71.759(2)	90	90
V (Å ³)	3171.31(16)	11162.3(8)	10453.8(4)
Ζ	2	8	8
$\rho(\text{calc.})(\text{g cm}^{-3})$	1.300	1.386	1.262
μ (mm ⁻¹)	0.678	1.988	0.075
N° of rflen/unique	51866/13172	118201/11573	13284/13284
Θ range (°)	3.0 to 76.2	3.723 to 76.119	1.7 to 20.8
Compl. to Θ_{max} (%)	100	100	95.5
R ₁	0.0609	0.0698	0.0916
wR ₂	0.1668	0.1817	0.2673
GooF	1.037	1.042	1.039

Table S5. Summary of X-ray crystallographic data for SFX-MeOTAD, SFX-TPTZ and SFX-TCz.

Figure S6. XRD powder patterns: simulated from single-crystal structures (red) and experimental (black).

Thermal properties

Figure S7. Differential scanning calorimetry of SFX-MeOTAD (top) and Spiro-MeOTAD (bottom).

Figure S8. Differential scanning calorimetry curves of SFX-TPTZ (top) and SFX-TCz (bottom).

Figure S9. Differential scanning calorimetry curves of SFX-TAD.

Figure S10. Box plot of photovoltaic parameters of PSCs with SFX-MeOTAD (left), and Spiro-MeOTAD (right) HTMS recorded using 0.05Vs-1 from short circuit to forward bias.

Figure S11. Box plot of average PCE (forward and reverse direction) of PSCs with SFX-MeOTAD (left), and Spiro-MeOTAD (right) HTMS recorded using 0.05Vs⁻¹ scan speed.

Bibliography

1 M. L. Petrus, T. Bein, T. J. Dingemans and P. Docampo, *J. Mater. Chem. A*, 2015, **3**, 12159–12162.