## **Supporting information**

Hierarchically Porous Few-Layer Porphyrinic Carbon Nanosheets Formed by VO<sub>x</sub>-Templating Method for High-Efficiency Oxygen Electroreduction

Aiguo Kong<sup>\*[a,b]</sup>, Chengyu Mao<sup>[b]</sup>, Yuan Wang<sup>[b]</sup>, Qipu Lin<sup>[b]</sup>, Xianhui Bu<sup>\*[c]</sup> and Pingyun Feng<sup>\*[b]</sup>

 [a] Dr A. Kong, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R.China \*E-mail: agkong@chem.ecnu.edu.cn

[b] Dr. A. Kong, M. Cheng, Q. Lin, Y. Wang, Prof P. Feng, Department of chemistry, University of California, Riverside, California 92521, United States;\* E-mail: pingyun.feng@ucr.edu

 [c] Prof. X. Bu, Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States; \*E-mail: xianhui.bu@csulb.edu

## **Table of Content**

Figure S1 XPS survey spectrum for FeTMPyP/V<sub>2</sub>O<sub>5</sub> intercalation compounds

Figure S2 TEM images for commercial V<sub>2</sub>O<sub>5</sub> powders

Figure S3 FT-IR spectra of precusors and products

Figure S4 XRD patterns of the PPCNs prepared at different temperatures

Figure S5 AFM and SEM spectra in different regions of PPCNs

Figure S6 Raman spectrum of PPCNs

Figure S7 N<sub>2</sub>-sorption and CO<sub>2</sub>-sorption analyses for PPCNs

Figure S8 SEM-EDS element mapping images for PPCNs

Figure S9 XPS survey spectrum of FeTPyPI precursor and the prepared PPCNs

Figure S10 ORR CVs obtained on PPCNs

Figure S11 RDE polarization curves on PPCN electrodes with different loadings

Figure S12 Structure and morphology of PPCNs prepared by heating different porphyrin/ $V_2O_5$  intercalation compounds

Figure S13 RDE polarization curves over the PPCNs prepared by heating different porphyrin  $/V_2O_5$  intercalation compounds

Figure S14 Effect of mass ratio of  $V_2O_5$  to FeTMPyP on the structures and ORR activities of the resultant PPCNs

Figure S15 Effect of carbonization temperatures of intercalation compounds on the ORR activity of the resultant PPCNs

Figure S16 Structure and composition of PPCN undergoing the second pyrolysis

Figure S17 Morphology of PPCN undergoing the second pyrolysis

Figure S18 ORR Stability of PPCNs investigated by CV curves

Figure S19 Methanol-tolerance performance of PPCNs



Figure S1. XPS survey spectrum (A) and the deconvoluted V 2p (B), N1s (C) and Fe 2p (D) spectra of FeTMPyP/V<sub>2</sub>O<sub>5</sub> intercalation compounds



Figure S2 TEM images for commercial V<sub>2</sub>O<sub>5</sub> powders



Figure S3 FT-IR spectra of commercial  $V_2O_5$  (a), FeTMPyP/ $V_2O_5$  intercalation compounds (b), the resultant materials (c) by heating FeTMPyP/ $V_2O_5$  at 750 °C for 4h, and PPCNs (d)



Figure S4 XRD patterns of the PPCNs prepared at 600 (a), 650 (b),675 (c),700 (d),750 (e), and 800 (f)  $^{\circ}$ C



Figure S5 AFM (A and B) and SEM (C and D) spectra in different regions of PPCNs obtained at 750  $^{\circ}\mathrm{C}$ 



Figure S6 Raman spectrum of PPCNs obtained at 750 °C



Figure S7. The corresponding micropore size distribution curves obtained by H-K method based on the N<sub>2</sub>-sorption analysis for PPCNs (A), and CO<sub>2</sub> adsorption-desorption isotherms of PPCNs at 273 K (B)



Figure S8. The SEM-EDS individual mapping images for Fe (A) and N (B) as well as a total element mapping image for Fe, V, O, N, Fe and Cl (C)



Figure S9 XPS survey spectrum of FeTPyPI (A) and the Fe 2p spectra (B) of FeTPyPI (a) and the prepared PPCNs (b)



Figure S10 ORR CVs obtained on the RDE of PPCNs in Ar- and  $O_2$ -statured 0.1 M KOH (A) and 0.1 M HClO<sub>4</sub> (B) electrolytes. The catalyst loadings on the electrodes in alkaline and acidic solutions are 0.1 and 0.25 mg cm<sup>-2</sup>, respectively. The scan rate is 10 mV s<sup>-1</sup>.



Figure S11 RRDE polarization curves on PPCNs and commercial Pt/C (20 wt%) in 0.1 M KOH (A) and 0.1 M HClO<sub>4</sub> (B) electrolytes at 1600 rpm with different loading. The scan rate is 5 mV s<sup>-1</sup>.



Figure S12 XRD patterns (A), UV-Vis diffuse reflectance spectra (B) and SEM images (C and D) for the PPCNs prepared by heating TMPyP/V<sub>2</sub>O<sub>5</sub>(a) and CoTMPyP/V<sub>2</sub>O<sub>5</sub>(b) at 675 °C for 4h. (E) is the corresponding TEM image of PPCNs derived from CoTMPyP/V<sub>2</sub>O<sub>5</sub>



Figure S13 ORR RDE polarization curves over the PPCNs prepared by heating TMPyP/V<sub>2</sub>O<sub>5</sub> (a) and CoTMPyP/V<sub>2</sub>O<sub>5</sub>(b), FeTMPyP/V<sub>2</sub>O<sub>5</sub>(c) at 675 °C for 4h in 0.1 M KOH (A) and 0.1 M HClO<sub>4</sub> (B) electrolytes at 1600 rpm. The catalyst loadings of PPCNs on the RDE electrodes in 0.1 M KOH and 0.1 M HClO<sub>4</sub> electrolytes are 0.10 and 0.25 mg cm<sup>-2</sup>, respectively. The scan rate is 10 mV s<sup>-1</sup>



Figure S14 XRD patterns of different FeTMPyP/V<sub>2</sub>O<sub>5</sub> compounds (A) prepared by using the different mass ratio of V<sub>2</sub>O<sub>5</sub> to FeTMPyP (changed from 3:1(a), 2:1(b) to 1:1(c)) and the corresponding PPCNs (B) at 750 °C. (C and D) SEM images of the derived PPCNs with the mass ratio of V<sub>2</sub>O<sub>5</sub> to FeTMPyP (3:1(C) and 1:1(D)). (E) RDE polarization curves on the corresponding PPCNs and commercial Pt/C (20 wt%) in 0.1 M KOH electrolytes at 1600 rpm. The catalyst loadings of the prepared PPCNs on the RDE electrodes is 0.10 mg cm<sup>-2</sup>. The scan rate is 10 mV s<sup>-1</sup>



Figure S15 ORR RDE polarization curves over the PPCNs prepared by heating FeTMPyP/V<sub>2</sub>O<sub>5</sub> at different temperatures for 4 h in 0.1 M KOH (A) and 0.1 M HClO<sub>4</sub> (B) electrolytes at1600 rpm. The catalyst loadings of PPCNs on the RDE electrodes in 0.1 M KOH and 0.1 M HClO<sub>4</sub> electrolytes are 0.10 and 0.25 mg cm<sup>-2</sup>, respectively. The scan rate is 10 mV s<sup>-1</sup>



Figure S16 XPS survey spectrum (A) and XRD pattern (B) of PPCN-700; the corresponding micropore size distribution curves obtained by H-K method based on the  $N_2$ -sorption analysis for PPCN-700



Figure S17 SEM (A and B) TEM images (C to F) image of PPCN-700 in different regions. Inset in (E) is the corresponding SAED pattern.



Figure S18 CV curves of ORR over the PPCN RDE electrode after run for 5000 cycles recorded in  $O_2$ -saturated 0.1 M KOH (A) and 0.1 M HClO<sub>4</sub>(B) electrolytes. The catalyst loadings of PPCNs on the RDE electrodes in 0.1 M KOH and 0.1 M HClO<sub>4</sub> electrolytes are 0.10 and 0.25 mg cm<sup>-2</sup>, respectively. The scan rate is 10 mV s<sup>-1</sup>



Figure S19 ORR RDE polarization curves over PPCNs and Pt/C catalysts in 0.1 M KOH (A and B) and 0.1 M HClO<sub>4</sub> (C and D) electrolytes containing methanol (2 wt%) at 1600 rpm (the capacitive currents were not subtracted). The catalyst loadings of PPCNs on the RDE electrodes in 0.1 M KOH and 0.1 M HClO<sub>4</sub> electrolytes are 0.10 and 0.25 mg cm<sup>-2</sup>, respectively. The scan rate is 10 mV s<sup>-1</sup>