Supplementary Information

Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate

and rapid frequency response capabilities

Wenwen Liu^{a, b}, Congxiang Lu^a, Hongling Li^a, Roland Yingjie Tay^a, Leimeng Sun^a, Xinghui Wang^a, Wai Leong Chow^a, Xingli Wang^a, Beng Kang Tay^{a, c,*}, Zhongwei Chen^{b,*}, Ji Yan^b, Kun Feng^b, Gregory Lui^b, Ricky Tjandra^b, Lathankan Rasenthiram^b, Gordon Chiu^b, Aiping Yu^{b,*}

- a. Novitas, Nanoelectronics center of excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- c. CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553
- * Corresponding authors. E-mail address: ebktay@ntu.edu.sg (B. K. Tay), zhwchen@uwaterloo.ca
 (Z. Chen), aipingyu@uwaterloo.ca (A. Yu).

Fig. S1 The digital photograph of inkjet printing paper and its corresponding physical/chemical properties.

Fig. S2 The digital photograph of Dimatix DMP-2800 inkjet printer used in this work.

Fig. S3 'Scotch Tape test' on the paper-based PEDOT: PSS-CNTs/Ag MSCs. The tape before (a) and after (b) peeling demonstrates the strong adhesion between PEDOT: PSS-CNTs/Ag film and paper substrate.

Fig. S4 Thickness of the paper-based PEDOT: PSS-CNTs/Ag MSCs produced with the different film layer number (1 layer, 5 layers, and 10 layers).

	e	Number of film layers (N)	N=1	N=5	N=10
		Thickness, T (nm)	51	276	628
		Interspace, i (µm)	600	600	600
	1	Width, w (µm)	300	300	300
	_	Length, I (mm)	6.5	6.5	6.5
		Edge, e (µm)	600	600	600
		Total surface area (cm ²)	1.2	1.2	1.2

Fig. S5 Dimensions of the paper-based PEDOT: PSS-CNTs/Ag MSCs produced with the different film layer number (1 layer, 5 layers and 10 layers).

Fig. S6 Evolution of the area capacitance of paper-based PEDOT: PSS-CNTs/Ag MSCs versus scan rate.

Fig. S7 Ragone plots showing energy and power densities of paper-based PEDOT: PSS-CNTs/Ag MSCs in comparison to those of (a) reported paper-based MSCs (or SCs) and (b) other micro-supercapacitors and commercially available energy storage devices.

Fig. S8 Self-discharge curves (open-circuit potential versus time) of paper-based PEDOT: PSS-CNTs/Ag MSCs with different PEDOT: PSS-CNTs film layer number obtained immediately after pre-charged to V_{max} .

Number of interdigital fingers (N)	N=14	N=10	N=8
Interspace, i (µm)	600	900	1200
Width, w (µm)	300	300	300
Length, I (mm)	6.5	6.5	6.5
Edge, e (µm)	600	600	600
Total surface area (cm ²)	1.2	1.2	1.2

Fig. S9 Dimensions of the paper-based PEDOT: PSS-CNTs/Ag MSCs produced with the different interspaces between neighbor fingers of 600 μ m, 900 μ m and 1200 μ m, respectively.

Fig. S10 Impedance phase angle as a function of frequency ranging from 100 kHz to 0.05 Hz for paper-based PEDOT: PSS-CNTs/Ag MSCs with different inter-space between the adjacent fingers.