Supplementary Information

Anodically fabricated TiO₂-SnO₂ nanotubes and their application in lithium ion batteries

M. Madian, *a,b,c M. Klose, a,d T. Jaumann, a A. Gebert, a S. Oswald, a N. Ismail, c A. Eychmüller, b J. Eckert a,d and L. Giebeler a,d

- a. Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Institute for Complex Materials, Helmholtzstr. 20, D-01069 Dresden, Germany.
- b. Technische Universität Dresden, Physical Chemistry, Bergstr. 66b, D-01069 Dresden, Germany.
- c. National Research Centre, Physical Chemistry Department, 33 El-Buhouth St., 12311 Dokki, Giza, Egypt.
- d. Technische Universität Dresden, Institut für Werkstoffwissenschaft, Helmholtzstr. 7, D-01069 Dresden, Germany.
- § present address: Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department Materials Physics, Montanuniversität Leoben, Jahnstr. 12, A-8700 Leoben, Austria.

Alloy	Sn concentration	Ti concentration
	(at.%)	(at.%)
Ti-1Sn	1.003 ± 0.001	98.997 ± 0.001
Ti-5Sn	5.003 ± 0.001	94.997 ± 0.001
Ti-10Sn	10.014 ± 0.001	89.986 ± 0.001

Tab. S1. ICP-OES analysis of the as-cast Ti-Sn alloys.

Fig. S1. SEM micrographs of the TiO_2/SnO_2 nanotubes (T5S sample) at 10 V (a), 20 V (b) and 40 V (c), respectively, for 5 h. Cross-sectional view for the sample formed at 40 V (d). The inset in (d) shows the nanotube bottoms.

Fig. S2. SEM micrographs of the TiO_2/SnO_2 nanotubes (T10S sample) formed at 10 V (a), 20 V (b) and 40 V (c), respectively, for 5 h. Bottom view of the sample formed at 40 V (d). The inset in (d) shows the cross-sectional nanotube walls.

Fig. S3. SEM micrographs of pure TiO_2 nanotubes formed at 10 V (a), 20 V (b) and 40 V (c), respectively, for 5 h. Bottom view of the sample formed at 40 V (d). The inset in (d) shows the cross-sectional view.

Fig. S4. SEM micrographs of TiO_2/SnO_2 nanotubes (T10S sample) prepared at 40 V; Top view showing the nanograss formed on the top of the some nanotubes (a), cross-sectional view at low magnification (b), cross-sectional view at high magnification showing the separation of the nanotube walls into nanoneedles or nanograss.

Fig. S5. XRD pattern of the as-grown TiO_2/SnO_2 nanotubes (T10S sample) prepared at 40 V represents the amorphous state of the as-grown nanotubes.

Fig. S6. Quantitative analysis of Ti and Sn contents in T1S (a), T5S (b) and T10S (c) electrodes obtained from EDXS elemental mapping.