Supporting Information for

WO₃ nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis

*Meijia Qiu^{a‡}, Peng Sun^{a‡}, Liuxue Shen^b, Kun Wang^c, Shuqin Song^c, Xiang Yu^d, Shaozao Tan^b, Chuanxi Zhao^{*a}, Wenjie Mai^{*a}*

^a Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P.R.China

^b Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China.

^c The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yan-sen University, Guangzhou 510275, China

^d Analytical and Testing Centre, Jinan University, Guangzhou 510632, China

Address corresponding to wenjiemai@gmail.com (WJM) ‡ These authors contribute equally to this work

Calculation methods

Single electrode

For a single electrode, its areal and gravimetric capacitance C_s and C_g can be calculated from the CV curves through the following equation:

$$C_{s} = \frac{\int IdU}{2vU_{p}} = \frac{S}{2vU_{p}}$$
$$C_{g} = \frac{\int IdU}{2vMU_{p}} = \frac{S}{2vMU_{p}}$$

where v is the scan rate, S is the area of the closed CV curve, U_p is the potential window and M is the mass loading of the active material. The area of the covered active material was controlled to be 1 cm².

The area capacitance C_s of a single electrode based GCD curves can be calculated from the following equation:

$$C_s = \frac{I \mathsf{V} t}{\mathsf{V} U}$$

where I is the discharge current, Δt is the discharge time, ΔU is the potential window.

Device

The area capacitance C_d of the device was calculated from the CV curves:

$$C_d = \frac{\int I dU}{2v U_w} = \frac{S}{2v U_w}$$

where v is the scan rate, S is the area of the closed CV curve and U_w is the voltage window.

The volumetric capacitance C_v of device was calculated from the CV curves by the following equation:

$$C_{v} = \frac{\int IdU}{2vVU_{w}} = \frac{S}{2vVU_{w}}$$

where v is the scan rate, S is the area of the closed CV curve ,V is the volume of the whole device, and U_w is the voltage window. The area of the covered active material was controlled to be 1 cm².

And the energy density and the average power density can be gained by employing the following equation:

$$E = \frac{C_v U_w^2}{2}$$
$$P = \frac{E}{t}$$
$$t = \frac{U_w}{v}$$

in which C_{ν} is the volumetric capacitance calculated before.

Figure S1 Positive and negative electrodes at a scan rate of 100 mV s⁻¹, representing a proper capacitance ratio for asymmetric supercapacitor.

Figure S2 CV curve of WO_3 deposited on carbon cloth, inset shows pictures of pure carbon cloth and WO_3 on it.

Figure S3 Mass loading and gravimetric capacitance (at a scan rate of 100 mV s⁻¹) of the NFL-WO₃ electrode at different deposition time.

Figure S4 Positive and negative electrodes at a scan rate of 100 mV s⁻¹, representing a proper capacitance ratio for asymmetric supercapacitor.

Figure S5 SEM images of the positive electrode. (a) SEM image of the $TiO_2@C$ NWs, inset shows the magnified picture. (b) SEM image of the $TiO_2@C@PPy$ electrode, inset shows the magnified picture.

Figure S6 Electrochemical performance of the $TiO_2@C@PPy$ electrode. (a) CV curves of the $TiO_2@C$ and $TiO_2@C@PPy$ electrodes. (b) Nyquist plots of the $TiO_2@C$ and $TiO_2@C@PPy$. (c) CV curves of the $TiO_2@C@PPy$ electrode at different scan rates. (d) GCD curves of the $TiO_2@C@PPy$ electrode at different current density.

Figure S7 Illustration about the application of tandem ASC devices charging a cellphone.