Supporting Information

Title: One-pot synthesis of multifunctional magnetic ferrite-MoS₂carbon dots nanohybrid adsorbent for efficient Pb(II) removal *Jing Wang, Wentao Zhang, Xiaoyue Yue, Qingfeng Yang, Fangbing Liu, Yanru Wang, Daohong Zhang, Zhonghong Li, Jianlong Wang**

S1. BET surface area measurement

Figure S1. BET surface area measurement shows surface area of 38.7m²/g for MnFMC and 33.7m²/g for CoFMC

Table S1. Magnetic data of MnFMC and CoFMC at room temperature						
material	M _s (emu/g)	H _c (Oe)	M _r (emu/g)			
MnFMC	24.68	11.33	0.31			
CoFMC	15.69	24.58	0.24			

S2. Magnetic properties of MnFMC and CoFMC

S3. pH values before and after adsorption

Table S2. Initial (before adsorption) and finial (after adsorption) pH values

adsorbent —	pH values						
	initial pH	1	2	3	4	5	6
MnFMC	final pH	0.95	1.55	2.62	3.56	4.48	4.89
CoFMC	final pH	0.97	1.85	2.03	3.73	4.82	5.44

S4. Adsorption kinetic parameters

Table S3. Kinetic parameters of Pb(II)adsorption on MnFMC and CoFMC

	pesudo-second-order			pecudo-first-order			intra-particle diffusion			
adsorbent										
		k ₂	q _e ,cal	D2	k ₁	q _e	D ²	Ŀ		D ²
	q _e ,exp	(g/mg min)	(mg/g)	К-	(min⁻¹)	(mg/g)	К-	К _і	L _i	Ν-
MnFMC	191.87	0.0033	192.31	0.9952	0.01068	146.85	0.9867	9.8717	-7.4384	0.9814
CoFMC	261.06	0.0023	270.27	0.9912	0.0089	218.33	0.9761	13.896	-10.504	0.9891

S5. Adsorption isotherm parameters

Table S4. Isotherm parameters of Pb(II)adsorption on MnFMC and CoFMC

		Lai	ngmuir isothe	rm	Freundlich isotherm			
adsorbent ter	temperature(K)	q _m	KL	D2	K _f	n	R ²	
		(mg g ⁻¹)	(L mg⁻¹)	K-	(mg g ⁻¹)			
MnFMC	298	666.67	0.0082	0.9985	9.22	1.3951	0.9651	
	308	625	0.0159	0.9967	18.31	1.617	0.9424	
	318	588.24	0.0299	0.9927	33.37	1.8972	0.9.58	
CoFMC	298	625	0.0064	0.9925	7.37	1.3887	0.9751	
	308	588.24	0.0137	0.9936	14.66	1.5504	0.9456	
	318	666.67	0.0282	0.9925	34.96	1.8567	0.9021	

S6. Comparison of different adsorbents for Pb(II) adsorption

adsorbent	adsorption capacity (mg/g)	reference
GO/chitosan	99	1
GO	328	2
EDTA-GO	479	2
EDTA-RGO	204	2
GO-gelatin/chitosan	100	3
CoFe ₂ O ₄ -graphene	142.8	4
MnFe ₂ O ₄ /Mn-Co oxide	481.2	5
CoFe ₂ O ₄ -GO	81.3	6
MnFe ₂ O ₄	488	7
MnFe ₂ O ₄ -GO	673	7
porous MnFe ₂ O ₄ nanowires	131	8
magnetite-GO-LDH	173	9
MWCNTs-CoFe ₂ O ₄	140.1	10
acetoacetanilide-Fe ₃ O ₄	392.2	11
MnFMC	588.24	This work
CoFMC	660.67	This work

 Table S5. Maximum Pb(II) adsorption capacities of different adsorbents

S7. Pb(II) adsorption capacity at different temperature

Figure S2. Pb(II) adsorption on MnFMC and CoFMC at 298K, 308K and 318K

S8. Adsorption thermodynamic parameters

Table S6. Thermodynamic parameters of Pb(II)adsorption on MnFMC and CoFMC

adsorbent	temperature(K)	$\Delta \ { m G}^0$	$\Delta \ \mathrm{H^0}$	$\Delta \ { m S}^{ m 0}$
	298	-3.66		
MnFMC	308	-5.76	67.94	239.96
	318	-8.47		
	298	-2.600		
CoFMC	308	-4.17	53.78	188.83
	318	-6.39		

nanohybrid adsorbents

Reference

- 1. He Y Q, Zhang N N and Wang X D. *Chinese. Chem. Lett.* 2011, **22**, 859-862.
- Madadrang C J, Kim H Y, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner M L and Hou S. ACS Appl. Mater. Interfaces, 2012, 4, 1186–1193.
- 3. Zhang N, Qiu H, Si Y, Wang W and Gao J. *Carbon*, 2011, **49**, 827-837.
- 4. Santhosh C, Kollu P, Felix S, Velmurugan V, Jeong S K and Grace A N. *RSC Adv.*, 2015, **5**, 28965-28972.
- 5. Zichuan M, Dongyuan Z, Yongfang C, Shengtao X Yinsu W and Yuanzhe G. *Dalton Trans.*, 2013, **42**, 14261-14267.
- Ma S, Zhan S, Jia Y and Zhou Q. ACS Appl. Mater. Interfaces, 2015, 7, 10576–10586.
- 7. Kumar S, Nair R R, Pillai P B, Gupta S N, Iyengar M A R and A K Soodet. *ACS Appl. Mater. Interfaces*, 2014, **6**, 7426-17436.
- 8. Cui H J, Shi J W, Yuan B, and Fu M L. *J. Mater. Chem. A*, 2013, **1**, 5902-5907.
- 9. Zhang F, Song Y, Song S, Zhang R and Hou Wet. *ACS Appl. Mater. Interfaces*, 2015, **7**, 7251–7263.
- 10. Zhou L, Ji L, Ma P C, Shao Y, He Z and Gao W. *J. Hazard. Mater.*, 2014, **265**, 104–114.
- 11. Sharma R K, Puri A, Monga Y and Adholeya A. J. Mater. Chem. A, 2014, **2**, 12888-12898.