Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process

Jun Di,^a Jiexiang Xia,^{a,*} Mengxia Ji,^a Li Xu,^a Sheng Yin,^a Zhigang Chen,^b Huaming Li^{1,*}

^aSchool of Chemistry and Chemical Engineering, Institute for Energy research, Jiangsu University,301 Xuefu Road, Zhenjiang, 212013, P. R. China

^bSchool of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China.

*Corresponding author: Tel.:+86-511-88791108; Fax: +86-511-88791108;

E-mail address: xjx@ujs.edu.cn; lhm@ujs.edu.cn

Figure S1. Typical SEM image of N-CQDs/BiOI samples and corresponding elemental mapping images of C, N, O, Bi, and I.

Figure S2. $(\alpha E_{photon})^{1/2}$ vs. E_{photon} curves of the as-prepared pure BiOI sample.

Series	Photocatalyst	The first order kinetic equation	k (min ⁻¹)	<i>R</i> ²
1	BiOI	$-\ln(C/C_0) = 0.0145t$	0.0145	0.9965
2	N-CQDs/BiOI-1	$-\ln(C/C_0) = 0.0283t$	0.0283	0.9958
3	N-CQDs/BiOI-2	$-\ln(C/C_0) = 0.0369t$	0.0369	0.9977
4	N-CQDs/BiOI-4	$-\ln(C/C_0) = 0.0267t$	0.0267	0.9957

 Table S1 Pseudo-first-order rate constant for RhB photocatalytic oxidation under different photocatalysts