Supporting Information

Facile electrochemical preparation of hierarchical porous structures

to enhance manganese oxide charge-storage properties

in ionic liquid electrolyte

Cheng-Hsien Yang, I-Wen Sun, Chien-Te Hsieh, Tzi-Yi Wu, Ching-Yuan Su, Yun-

Shan Li, Jeng-Kuei Chang*

Table S1. Supercapacitive properties of the proposed hierarchical porous MnO₂ electrode in BMP–DCA IL compared to those of other nanostructured MnO₂/IL electrolyte combinations reported in the literature.

Electrode	Electrolyte	Maximum energy density (Wh/kg)	Maximum power density (kW/kg)	Ref.
3D mesoporous MnO ₂ @Si nanowires	LiClO ₄ /PMP-NTf ₂	0.17 Wh/L ^a	16 W/L ^a	20
MnO ₂ @nanoporous Au	EMI–DCA	40	150 ^b	21
Asymmetrical nickel foam/CNT/Au/MnO ₂ (positive)//activated carbon (negative)	BMI–PF ₆ /DMF	67.5	20.4	22
MnO ₂ nanowires	LiClO ₄ /OZO quasi- IL	76 °	15.6 °	23
Macroporous manganese oxide film	Li ⁺ /BMMI–NTf ₂	29 °		24
Reduced graphene oxide/MnO ₂ /Ag nanowire	BMI–NTf ₂ gel	2.3 Wh/L ^a	162 W/L ^a	25
Hierarchical porous MnO ₂	BMP-DCA	90	43	This study

BMI: 1-butyl-3-methylimidazolium; BMMI: 1-butyl-2,3-dimethylimidazolium;

BMP: N-butyl-N-methylpyrrolidinium; DCA: dicyanamide; DMF: N,N-dimethylformamide;

EMI: 1-ethyl-3-methylimidazolium; NTf₂: bis(trifluromethylsulfonyl)imide; OZO: 2-

oxazolidinone; PMP: 1-methyl-1-propylpyrrolidinium.

^a calculated based on volume. ^b based on a different calculation method. ^c calculated from the provided data.

Table S2. The E_0 values of hierarchical porous MnO_2 and flat MnO_2 electrodes derived from the XAS spectra shown in Figure 3.

Detential	$E_0 (eV)$		
Potential	Porous MnO ₂	Flat MnO ₂	
-2.2 V (step 1)	6549.2	6550.1	
+0.8 V (step 2)	6551.6	6550.9	
-2.2 V (step 3)	6549.2	6550.2	

Figure S1. Photos of the porous Ni electrodes (a) without and (b) with deposited MnO_2 .

Figure S2. (a) X-ray diffraction pattern and (b) electron diffraction pattern of deposited Mn oxide.

Figure S3. Chronopotentiograms of hierarchical porous MnO_2 electrode and flat MnO₂ electrode recorded in the three-electrode cell. The applied current density was ± 1.0 A g⁻¹.

Figure S4. CV curves of hierarchical porous MnO_2 electrode (curve *i*) and flat MnO_2 electrode (curve *ii*) measured in aqueous Na_2SO_4 electrolyte with a potential sweep rate of 5 mV s⁻¹.

Figure S5. Photos of two-electrode symmetric cell assembly.