Supporting Information

Myriophyllum-like Hierarchical TiN@Ni₃N Nanowire Arrays for Bifunctional Water Splitting Catalyst

Qiting Zhang,^a Yuhang Wang,^a Yongcheng Wang,^a Abdullah M. Al-Enizi,^b Ahmed A. Elzatahry,^c

Gengfeng Zheng^{a,*}

^{*a*}Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China

^b Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

^cMaterials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.

* Address correspondence to: gfzheng@fudan.edu.cn (G.Z.)

Experimental Section

Ti foil (thickness: 100 μ m), sodium hydroxide (NaOH), ethanol, acetone, nickel(II) nitrate hexahydrate (Ni(NO₃)₂·6H₂O), concentrated ammonium hydroxide (25.0–28.0 wt%), concentrated HCl (36.0–38.0 wt%), nickel chloride hexahydrate (NiCl₂·6H₂O), ammonium fluoride (NH₄F), urea, potassium hydroxide (KOH), sulfuric acid (H₂SO₄) were of analytical grade and purchased from Shanghai Chemical Corp. All chemicals were used as received without further purification. Deionized (DI) water was used for all experiments.

Calculation of electrochemically active area ($R_f \times 10^3$):

The roughness factor $(R_f \times 10^3)$ was evaluated from the double-layer capacitance (C_{dl}) charging curve using cyclic voltammetry in a narrow potential range (0.3–0.5 V) through the equation: R_f $\times 10^3 = C_{dl}/60 \ \mu\text{F} \cdot \text{cm}^{-2}$ (capacitance of a smooth surface),¹³ in which $C_{dl} = I_{cap}/(dE/dt)$, where I_{cap} is the capacitive current at the midpoint of the scan range and dE/dt is the scan rate.

Calculation of turnover frequency (TOF):

The TOF values of TiN@Ni3N and Ni3N electrode were calculated according to equation:^{S1, S2} TOF= $j \times A/(4 \times F \times m)$, among which *j* is the current density obtained at overpotential of 60 mV in A/cm², *A* is the surface area of the electrode, *F* is the Faraday efficiency (96,485 /mol), and *m* is the number of moles of the TiN@Ni₃N and Ni₃N deposited onto the electrodes.

Supporting Figures

Figure S1. SEM images of (a, b) pure TiN nanowires and (c, d) TiN@NiO nanowires.

Figure S2. XRD patterns of (a) NiO nanosheets (PDF No. 71-1179) and (b) Ni_3N nanosheets (PDF No. 10-0280), along with the Ti foil substrate. SEM images of (c) NiO nanosheets and (d) Ni_3N nanosheets grown directly on Ti foil.

Figure S3. Photographs of the as-synthesized samples grown in Ti foils.

Figure S4. EDS spectrum of the TiN@Ni₃N nanowire arrays.

Figure S5. High-resolution XPS spectra of (a) Ni 2p, (b) N 1s, (c) Ti 2p and (d) O 1s. Red curves correspond to the as-prepared samples. Blue curve correspond to the post-HER samples. Green curves correspond to the post-OER samples.

Figure S6. CV curves of TiN@Ni₃N between 1.0 and 1.7 V (vs. RHE) measured at a scan rate of 5 -

200 mV/s in 1 M KOH.

Figure S7. LSV curves of TiN@Ni₃N in neutral electrolyte (blue curve), acid electrolyte (green curve) and alkaline electrolyte (red curve).

Figure S8. Nyquist plots of the TiN@Ni₃N nanowire arrays and the Ni₃N nanosheets with enlarged scale.

Figure S9. (a) SEM and (b) TEM images of the TiN@Ni₃N nanowires after 10 h of electrocatalytic

reaction.

 Table S1. Comparison of HER electrocatalytic performance between this work and previously

 reported materials.

Materials	Electrolyte	Scan rate	Onset	Potential	Tafel	References
		(mV/s)	potential	(vs RHE) at	slope	(in the
			(mV)	80 mA/cm ²	(mV/dec)	manuscript)
				(mV)		
TiN@Ni₃N	1 M KOH	5	15	-62	42.1	This work
Ni ₃ N/Ni-foam	1 M KOH	25	50	-290	60	Ref.13
NiMoN _x /C nanosheets	0.1 M HClO ₄	2	78	/	35.9	Ref.19
Ni ₂ P nanosheets	0.5 M H ₂ SO ₄	5	50	~-200	68	Ref.20
Ni _{0.33} Co _{0.67} S ₂ NWs	0.5 M H ₂ SO ₄	5	52	-110	44.1	Ref.21
Ni_3S_2 Nanosheet Arrays	neutral media	50	170	>400	/	Ref.25
NiS/Ni foam	1 М КОН	5	150	220	83	Ref.27
CFP/NiCo ₂ O ₄ /CuS	0.5 M H ₂ SO ₄	2	31	-110	41	Ref.28
Nickel phosphorus nanoparticles film	1 М КОН	2	98	-150	55	Ref.29
Ni ₅ P ₄ films	0.5 M H ₂ SO ₄	/	~120	>150	40	Ref.30
Ni ₅ P ₄ films	1 М КОН	/	~115	>150	53	Ref.30

Table S2. Comparison of OER electrocatalytic performance between this work and previously

 reported materials.

Materials	Electrolyt	Scan rate	Onset	Potential (vs	Tafel	References
	e	(mV/s)	potential	RHE) at 50	slope	(in the
			(V vs	mA/cm ²	(mV/dec)	manuscript)
			RHE)	(V)		
TiN@Ni₃N	1 М КОН	5	1.52	1.65	95.4	This work
Ni ₃ N nanosheets	1 М КОН	5	1.55	1.58	45	Ref.7
Ni ₃ N/Ni-foam	1 M KOH	25	1.60	1.68	120	Ref.13
NiS/Ni foam	1 М КОН	5	1.55	1.56	89	Ref.27
Nickel phosphorus nanoparticles film	1 М КОН	2	1.55	1.62	120	Ref.29
Ni ₅ P ₄ films	1 М КОН	40	1.58	1.50	40	Ref.30
Fe-Ni-Ox-NPs	1 М КОН	10	1.48	1.53	38	Ref.31
Ni(OH) ₂ /NiOOH	1 М КОН	100	1.56	/	54	Ref.32

References

S1. X. Lu and X. Zhao, Nat. Commun., 2015, 6, 6616.

S2. A.J. Esswein, M.J.McMurdo, P. N. Ross, A.T. Bell and T. D. Tilley, J. Phys. Chem. C, 2009, 113, 15068-15072.